CHAPTER 1 INTRODUCTION TO RF AND WIRELESS TECHNOLOGY
1.1 A Wireless World
1.2 RF Design Is Challenging
1.3 The Big Picture
References
CHAPTER 2 BASIC CONCEPTS IN RF DESIGN
2.1 General Considerations
2.1.1 Units in RF Design
2.1.2 Time Variance
2.1.3 Nonlinearity
2.2 Effects of Nonlinearity
2.2.1 Harmonic Distortion
2.2.2 Gain Compression
2.2.3 Cross Modulation
2.2.4 Intermodulation
2.2.5 Cascaded Nonlinear Stages
2.2.6 AMPM Conversion
2.3 Noise
2.3.1 Noise as a Random Process
2.3.2 Noise Spectrum
2.3.3 Effect of Transfer Function on Noise
2.3.4 Device Noise
2.3.5 Representation of Noise in Circuits
2.4 Sensitivity and Dynamic Range
2.4.1 Sensitivity
2.4.2 Dynamic Range
2.5 Passive Impedance Transformation
2.5.1 Quality Factor
2.5.2 Series-to-Parallel Conversion
2.5.3 Basic Matching Networks
2.5.4 Loss in Matching Networks
2.6 Scattering Parameters
2.7 Analysis of Nonlinear Dynamic Systems
2.7.1 Basic Considerations
2.8 Volterra Series
2.8.1 Method of Nonlinear Currents
References
Problems
CHAPTER 3 COMMUNICATION CONCEPTS
3.1 General Considerations
3.2 Analog Modulation
3.2.1 Amplitude Modulation
3.2.2 Phase and Frequency Modulation
3.3 Digital Modulation
3.3.1 Intersymbol Interference
3.3.2 Signal Constellations
3.3.3 Quadrature Modulation
3.3.4 GMSK and GFSK Modulation
3.3.5 Quadrature Amplitude Modulation
3.3.6 Orthogonal Frequency Division Multiplexing
3.4 Spectral Regrowth
3.5 Mobile RF Communications
3.6 Multiple Access Techniques
3.6.1 Time and Frequency Division Duplexing
3.6.2 Frequency-Division Multiple Access
3.6.3 Time-Division Multiple Access
3.6.4 Code-Division Multiple Access
3.7 Wireless Standards
3.7.1 GSM
3.7.2 IS-95 CDMA
3.7.3 Wideband CDMA
3.7.4 Bluetooth
3.7.5 IEEE802.11abg
3.8 Appendix I: Differential Phase Shift Keying
References
Problems
CHAPTER 4 TRANSCEIVER ARCHITECTURES
4.1 General Considerations
4.2 Receiver Architectures
4.2.1 Basic Heterodyne Receivers
4.2.2 Modern Heterodyne Receivers
4.2.3 Direct-Conversion Receivers
4.2.4 Image-Reject Receivers
4.2.5 Low-IF Receivers
4.3 Transmitter Architectures
4.3.1 General Considerations
4.3.2 Direct-Conversion Transmitters
4.3.3 Modern Direct-Conversion Transmitters
4.3.4 Heterodyne Transmitters
4.3.5 Other TX Architectures
4.4 OOK Transceivers
References
Problems
CHAPTER 5 LOW-NOISE AMPLIFIERS
5.1 General Considerations
5.2 Problem of Input Matching
5.3 LNA Topologies
5.3.1 Common-Source Stage with Inductive Load
5.3.2 Common-Source Stage with Resistive Feedback
5.3.3 Common-Gate Stage
5.3.4 Cascode CS Stage with Inductive Degeneration
5.3.5 Variants of Common-Gate LNA
5.3.6 Noise-Cancelling LNAs
5.3.7 Reactance-Cancelling LNAs
5.4 Gain Switching
5.5 Band Switching
5.6 High-IP2 LNAs
5.6.1 Differential LNAs
5.6.2 Other Methods of IP2 Improvement
5.7 Nonlinearity Calculations
5.7.1 Degenerated CS Stage
5.7.2 Undegenerated CS Stage
5.7.3 Differential and Quasi-Differential Pairs
5.7.4 Degenerated Differential Pair
References
Problems
CHAPTER 6 MIXERS
6.1 General Considerations
6.1.1 Performance Parameters
6.1.2 Mixer Noise Figures
6.1.3 Single-Balanced and Double-Balanced Mixers
6.2 Passive Downconversion Mixers
6.2.1 Gain
6.2.2 LO Self-Mixing
6.2.3 Noise
6.2.4 Input Impedance
6.2.5 Current-Driven Passive Mixers
6.3 Active Downconversion Mixers
6.3.1 Conversion Gain
6.3.2 Noise in Active Mixers
6.3.3 Linearity
6.4 Improved Mixer Topologies
6.4.1 Active Mixers with Current-Source Helpers
6.4.2 Active Mixers with Enhanced Transconductance
6.4.3 Active Mixers with High IP2
6.4.4 Active Mixers with Low Flicker Noise
6.5 Upconversion Mixers
6.5.1 Performance Requirements
6.5.2 Upconversion Mixer Topologies
References
Problems
CHAPTER 7 PASSIVE DEVICES
7.1 General Considerations
7.2 Inductors
7.2.1 Basic Structure
7.2.2 Inductor Geometries
7.2.3 Inductance Equations
7.2.4 Parasitic Capacitances
7.2.5 Loss Mechanisms
7.2.6 Inductor Modeling
7.2.7 Alternative Inductor Structures
7.3 Transformers
7.3.1 Transformer Structures
7.3.2 Effect of Coupling Capacitance
7.3.3 Transformer Modeling
7.4 Transmission Lines
7.4.1 T-Line Structures
7.5 Varactors
7.6 Constant Capacitors
7.6.1 MOS Capacitors
7.6.2 Metal-Plate Capacitors
References
Problems
CHAPTER 8 OSCILLATORS
8.1 Performance Parameters
8.2 Basic Principles
8.2.1 Feedback View of Oscillators
8.2.2 One-Port View of Oscillators
8.3 Cross-Coupled Oscillator
8.4 Three-Point Oscillators
8.5 Voltage-Controlled Oscillators
8.5.1 Tuning Range Limitations
8.5.2 Effect of Varactor Q
8.6 LC VCOs with Wide Tuning Range
8.6.1 VCOs with Continuous Tuning
8.6.2 Amplitude Variation with Frequency Tuning
8.6.3 Discrete Tuning
8.7 Phase Noise
8.7.1 Basic Concepts
8.7.2 Effect of Phase Noise
8.7.3 Analysis of Phase Noise: Approach I
8.7.4 Analysis of Phase Noise: Approach II
8.7.5 Noise of Bias Current Source
8.7.6 Figures of Merit of VCOs
8.8 Design Procedure
8.8.1 Low-Noise VCOs
8.9 LO Interface
8.10 Mathematical Model of VCOs
8.11 Quadrature Oscillators
8.11.1 Basic Concepts
8.11.2 Properties of Coupled Oscillators
8.11.3 Improved Quadrature Oscillators
8.12 Appendix I: Simulation of Quadrature Oscillators
References
Problems
CHAPTER 9 PHASE-LOCKED LOOPS
9.1 Basic Concepts
9.1.1 Phase Detector
9.2 Type-I PLLs
9.2.1 Alignment of a VCO’s Phase
9.2.2 Simple PLL
9.2.3 Analysis of Simple PLL
9.2.4 Loop Dynamics
9.2.5 Frequency Multiplication
9.2.6 Drawbacks of Simple PLL
9.3 Type-II PLLs
9.3.1 PhaseFrequency Detectors
9.3.2 Charge Pumps
9.3.3 Charge-Pump PLLs
9.3.4 Transient Response
9.3.5 Limitations of Continuous-Time Approximation
9.3.6 Frequency-Multiplying CPPLL
9.3.7 Higher-Order Loops
9.4 PFDCP Nonidealities
9.4.1 Up and Down Skew and Width Mismatch
9.4.2 Voltage Compliance
9.4.3 Charge Injection and Clock Feedthrough
9.4.4 Random Mismatch between Up and Down Currents
9.4.5 Channel-Length Modulation
9.4.6 Circuit Techniques
9.5 Phase Noise in PLLs
9.5.1 VCO Phase Noise
9.5.2 Reference Phase Noise
9.6 Loop Bandwidth
9.7 Design Procedure
9.8 Appendix I: Phase Margin of Type-II PLLs
References
Problems
CHAPTER 10 INTEGER-N FREQUENCY SYNTHESIZERS
10.1 General Considerations
10.2 Basic Integer-N Synthesizer
10.3 Settling Behavior
10.4 Spur Reduction Techniques
10.5 PLL-Based Modulation
10.5.1 In-Loop Modulation
10.5.2 Modulation by Offset PLLs
10.6 Divider Design
10.6.1 Pulse Swallow Divider
10.6.2 Dual-Modulus Dividers
10.6.3 Choice of Prescaler Modulus
10.6.4 Divider Logic Styles
10.6.5 Miller Divider
10.6.6 Injection-Locked Dividers
10.6.7 Divider Delay and Phase Noise
References
Problems
CHAPTER 11 FRACTIONAL-N SYNTHESIZERS
11.1 Basic Concepts
11.2 Randomization and Noise Shaping
11.2.1 Modulus Randomization
11.2.2 Basic Noise Shaping
11.2.3 Higher-Order Noise Shaping
11.2.4 Problem of Out-of-Band Noise
11.2.5 Effect of Charge Pump Mismatch
11.3 Quantization Noise Reduction Techniques
11.3.1 DAC Feedforward
11.3.2 Fractional Divider
11.3.3 Reference Doubling
11.3.4 Multiphase Frequency Division
11.4 Appendix I: Spectrum of Quantization Noise
References
Problems
CHAPTER 12 POWER AMPLIFIERS
12.1 General Considerations
12.1.1 Effect of High Currents
12.1.2 Efficiency
12.1.3 Linearity
12.1.4 Single-Ended and Differential PAs
12.2 Classification of Power Amplifiers
12.2.1 Class A Power Amplifiers
12.2.2 Class B Power Amplifiers
12.2.3 Class C Power Amplifiers
12.3 High-Efficiency Power Amplifiers
12.3.1 Class A Stage with Harmonic Enhancement
12.3.2 Class E Stage
12.3.3 Class F Power Amplifiers
12.4 Cascode Output Stages
12.5 Large-Signal Impedance Matching
12.6 Basic Linearization Techniques
12.6.1 Feedforward
12.6.2 Cartesian Feedback
12.6.3 Predistortion
12.6.4 Envelope Feedback
12.7 Polar Modulation
12.7.1 Basic Idea
12.7.2 Polar Modulation Issues
12.7.3 Improved Polar Modulation
12.8 Outphasing
12.8.1 Basic Idea
12.8.2 Outphasing Issues
12.9 Doherty Power Amplifier
12.10 Design Examples
12.10.1 Cascode PA Examples
12.10.2 Positive-Feedback PAs
12.10.3 PAs with Power Combining
12.10.4 Polar Modulation PAs
12.10.5 Outphasing PA Example
References
Problems
CHAPTER 13 TRANSCEIVER DESIGN EXAMPLE
13.1 System-Level Considerations
13.1.1 Receiver
13.1.2 Transmitter
13.1.3 Frequency Synthesizer
13.1.4 Frequency Planning
13.2 Receiver Design
13.2.1 LNA Design
13.2.2 Mixer Design
13.2.3 AGC
13.3 TX Design
13.3.1 PA Design
13.3.2 Upconverter
13.4 Synthesizer Design
13.4.1 VCO Design
13.4.2 Divider Design
13.4.3 Loop Design
References
Problems
INDEX
內容試閱:
广受好评的射频微电子畅销书,针对最新的架构、电路和器件进行了全面扩展与更新。无线通信和电力一样无处不在,但射频电路的设计仍然给工程师和研究者们带来巨大挑战。自本书第一版出版15年来,人们对高性能的不断追求使得射频技术爆炸式地增长。第二版与前版相比厚度翻倍,包含上百个例题与习题,更系统地讲述了射频电路与收发机分析与设计的基础知识和最新技术,针对低噪声放大器、混频器、振荡器和频率综合器等电路模块提出了若干新的设计方法与分析技术。最后新增一章,从WiFi的具体设计指标开始,为读者讲述了如何利用前面各章的知识,逐步完成晶体管级的射频收发机设计。本书内容涵盖:核心射频原理,包括噪声与非线性,并有机融合了模拟电路设计、微波理论与通信系统等内容。从射频集成电路设计者的角度直观地描述了调制理论和无线通信标准。各种收发机架构,如超外差式、滑动中频式、直接变频式、镜像抑制式和低中频式等。低噪声放大器,包括Cascode共栅和共源等结构、噪声相消技术和电抗抵消技术等。无源与有源混频器,包括增益与噪声的分析和新型混频器结构等。压控振荡器,包括相位噪声机制、各种压控振荡器电路结构和关于噪声-功耗-调谐范围的设计权衡技术等。无源元件,包括集成电感、MOS可变电容器和变压器等。低相位噪声、低杂散锁相环的分析与设计。整数N和分数N频率综合器,并介绍了分频器的设计。功率放大器的原理与电路结构及发射机架构,包括极坐标调制式和反相调制式等。
作者简介 Behzad Razavi
美国加州大学洛杉矶分校(UCLA)电机工程系教授,在长期的教学与科研工作中多次获得各种奖项。主要研究领域包括无线收发机、宽带数据通信电路和数据转换器等。IEEE会士,IEEE杰出教授,国际固态电路会议(ISSCC)50年以来排名前10位的作者之一,在模拟、射频和高速电路领域发表了7本专著。
导读RF Microelectronics一书的作者Behzad
Razavi是美国加州大学洛杉矶分校终身教授,曾经在美国贝尔实验室和惠普实验室从事多年的射频电路设计工作,在射频电路领域有数十年的科研和教学经验。本书的第一版于1998年问世,经过不断的再版和翻译,成为射频电路设计领域的经典书籍。14年来,射频电路设计领域发生了巨大的变化,高集成度的无线设备和宽带的无线应用,促使科研人员在收发信机结构、电路形式及器件特性上,不断推陈出新。而且,新的电路分析方法及建模技术的成熟,使科研人员对射频电路的理解步入一个新的台阶。为反映这些变化,本书的第二版得以问世。与旧版相比,新版在篇章结构与具体内容上都有显著变化,两者的内容重合度在10%左右。在新版著作中,作者通过大量的设计实例和问题讨论,帮助读者在学习射频电路整体分析方法的同时,了解射频电路设计中可能遇到的细节问题。同时,在新版著作中,作者也更加强调如何帮助读者掌握射频电路设计的基本方法,为此作者还特别增加了一章,用于指导读者如何一步一步地设计晶体管级的双频段WiFi收发信机。本书的具体内容可以概括如下。第2章介绍射频电路设计中的基本概念,其中增加了双端口网络S参数的定义和计算实例,为本书后续章节的分析打下基础。随后,第3章对无线通信的基本概念进行阐述,重点介绍数字调制方式及其相应的电路实现实例。第4章不仅介绍传统经典结构的各类收发信机,同时基于作者对射频电路最新发展趋势的跟踪,广受关注的新型收发信机结构也出现在新版著作中。值得一提的是,作者还通过问题讨论等方式,结合802.11ag等具体无线通信标准,讲解了设计中需要注意的实际问题。本书的第5章至第12章,详尽介绍了无线收发信机中的各个子模块。与旧版相比,各子模块的分类方式有显著改进,作者也浓墨重彩地分析了各类新型模块技术,使读者能够及时地掌握射频电路设计的新趋势。新版还加入了无源器件的介绍与分析,使内容更趋完整。本书的第13章是收发信机设计实例,如前所述,本章内容是全书知识点的灵活运用,也是作者专注于设计方法传授的点睛之笔。本书的内容体系基本涵盖了国内高校“通信基本电路”(亦称“高频电子线路”)专业基础课程的教学内容。但是,通过本人在上海交通大学电子工程系本科三年级的亲身教学实践(1学期64学时),发现本书与“通信基本电路”课程的教学大纲存在一定的不匹配之处。本书的内容相对于本科阶段的知识体系显得内容过于庞大,系统级的电路分析定性讲解有余,而单元电路的定量分析不足。因此,本书更适合作为理工类大专院校电子类专业研究生的课程教材。如果作为理工类大专院校通信、电子类本科生双语教学和全英文教学的教材,建议结合Thomas
H. Lee的Design of CMOS Radio-Frequency Integrated
Circuits(由电子工业出版社翻译出版),以便于学生掌握单元电路基础知识,为今后的科研打下扎实的基础。本书内容涵盖无线收发信机各个模块的介绍、分析和设计,并融入了Razavi教授数十年的电路设计经验,对从事射频电路设计的专业技术人员而言,更是一本不可多得的必备书籍。
甘小莺 副教授上海交通大学电子工程系 PREFACE TO THE SECOND EDITION In the 14 years
since the first edition of this book, RF IC design has experienced
a dramatic metamorphosis. Innovations in transceiver architectures,
circuit topologies, and device structures have led to
highly-integrated “radios” that span a broad spectrum of
applications. Moreover, new analytical and modeling techniques have
considerably improved our understanding of RF circuits and their
underlying principles. A new edition was therefore due. The second
edition differs from the first in several respects: 1. I realized
at the outset—three-and-a-half years ago—that simply adding
“patches” to the first edition would not reflect today’s RF
microelectronics. I thus closed the first edition and began with a
clean slate. The two editions have about 10% overlap. 2. I wanted
the second edition to contain greater pedagogy, helping the reader
understand both the fundamentals and the subtleties. I have thus
incorporated hundreds of examples and problems. 3. I also wanted to
teach design in addition to analysis. I have thus included
step-by-step design procedures and examples. Furthermore, I have
dedicated Chapter 13 to the step-by-step transistor-level design of
a dual-band WiFi transceiver. 4. With the tremendous advances in RF
design, some of the chapters have inevitably become longer and some
have been split into two or more chapters. As a result, the second
edition is nearly three times as long as the first. Suggestions for
Instructors and Students The material in this book is much more
than can be covered in one quarter or semester. The following is a
possible sequence of the chapters that can be taught in one term
with reasonable depth. Depending on the students’ background and
the instructor’s preference, other combinations of topics can also
be covered in one quarter or semester. Chapter 1: Introduction to
RF and Wireless Technology This chapter provides the big picture
and should be