新書推薦:
《
地理计算与R语言 [英] 罗宾·洛夫莱斯 [德]雅纳·蒙乔 [波兰] 雅库布·诺沃萨德
》
售價:HK$
121.0
《
沈括的知识世界:一种闻见主义的实践(中华学术译丛)
》
售價:HK$
87.4
《
大思维:哥伦比亚商学院六步创新思维模型
》
售價:HK$
72.8
《
宏观经济学(第三版)【2024诺贝尔经济学奖获奖者作品】
》
售價:HK$
155.7
《
UE5虚幻引擎必修课(视频教学版)
》
售價:HK$
110.9
《
真需求
》
售價:HK$
110.9
《
阿勒泰的春天
》
售價:HK$
50.4
《
如见你
》
售價:HK$
51.3
|
內容簡介: |
本书针对Python 3.6 版本进行了全面更新,涵盖了在这些领域中使用Python组件演示的概率、统计和机器学习之间的链接的关键思想。所提供的Python代码、所有的图形和数值结果都是可重复的。作者通过使用多种分析方法和Python代码处理有意义的示例来开发机器学习中的关键直觉,从而将理论概念与具体实现联系起来。对某些重要结果也给出了详细的证明。
|
目錄:
|
译者序
前言
第1版前言
符号说明
第1章科学Python入门1
11安装和设置2
12Numpy4
121Numpy数组和内存5
122Numpy矩阵8
123Numpy广播操作9
124Numpy掩码数组11
125浮点数11
126Numpy优化简介14
13Matplotlib15
131Matplotlib的替代方法16
132Matplotlib的扩展17
14IPython17
15Jupyter Notebook18
16Scipy20
17Pandas21
171Series21
172DataFrame23
18Sympy25
19编译库接口27
110集成开发环境28
111性能和并行编程快速指南28
112其他资源31
参考文献32
第2章概率33
21引言33
211概率密度34
212随机变量35
213连续随机变量39
214微积分以外的变量变换41
215独立随机变量42
216经典Broken Rod示例44
22投影法45
221加权距离47
23条件期望作为投影47
231附录51
24条件期望与均方误差52
25条件期望和均方误差优化
示例55
251示例155
252示例258
253示例360
254示例463
255示例564
256示例666
26有用的分布67
261正态分布67
262多项分布67
263卡方分布69
264泊松分布和指数分布71
265伽马分布72
266贝塔分布73
267狄利克雷多项分布74
X
XI
27信息熵76
271信息论的概念76
272信息熵的性质78
273KullbackLeibler散度79
274交叉熵作为大似然80
28矩母函数80
29蒙特卡罗采样方法83
291离散变量逆CDF法83
292连续变量逆CDF法85
293舍选法86
210采样重要性重采样90
211实用的不等式92
2111马尔可夫不等式92
2112切比雪夫不等式93
2113霍夫丁不等式94
参考文献96
第3章统计97
31引言97
32用于统计的Python模块98
321Scipy统计模块98
322Sympy统计模块99
323其他用于统计的Python
模块99
33收敛类型100
331几乎必然收敛100
332依概率收敛102
333依分布收敛104
334极限定理104
34大似然估计105
341设置抛硬币试验107
342Delta方法115
35假设检验和p值117
351回到抛硬币的例子118
352ROC曲线120
353p值122
354检验统计量123
355多重假设检验129
356Fisher精确检验129
36置信区间131
37线性回归134
371扩展至多个协变量141
38大后验概率145
39鲁棒统计150
310自助法155
3101参数化自助法159
311高斯马尔可夫模型160
312非参数方法162
3121核密度估计162
3122核平滑164
3123非参数回归估计169
3124近邻回归169
3125核回归173
3126维数灾难174
3127非参数检验176
313生存分析181
参考文献187
第4章机器学习188
41引言188
42Python机器学习模块188
43学习理论192
431机器学习理论概述194
432泛化理论198
433泛化/近似复杂度示例199
434交叉验证204
435偏差和方差208
436学习噪声211
44决策树213
441随机森林219
442提升树220
45逻辑回归223
46广义线性模型231
47正则化236
471岭回归239
472套索回归243
48支持向量机244
49降维248
491独立成分分析252
410聚类256
411集成方法259
4111装袋法259
4112提升法261
412深度学习262
4121TensorFlow概述270
4122梯度下降275
4123基于卷积神经网络的图像
处理286
参考文献301
|
內容試閱:
|
第2版是针对Python 36 版本更新的。此外,许多现有章节已经根据第1版的反馈进行了修订,因此更加清晰简洁。第2版在第1版的基础上增加了30%有关重要概率分布的内容,包括关键推导和用于演示说明的代码示例。第3章增加了重要的统计检验,包括Fisher精确检验和MannWhitneyWilcoxon检验,还新增了生存分析这一节内容。第4章最重要的补充内容是关于图像处理的深度学习一节,该节详细讨论了支持所有深度学习工作的梯度下降方法,第4章对广义线性模型也进行了讨论。与第1版一样,本书有许多编程技巧,说明了科学编程和机器学习的有效Python模块和方法;有445个经过实际验证的可运行的代码块,你可以尝试在自己的代码中加入这些代码块;158个图形(几乎都是用Python生成的)可视化地演示了代码和数学中使用的概念。本书还讨论并使用了关键的Python模块,如Numpy、Scikitlearn、Sympy、Scipy、lifelines、CVXPY、Theano、Matplotlib、Pandas、TensorFlow、Statsmodels和Keras。
与第1版一样,所有的关键概念都从数学上展开,并且在Python中复现,为读者提供了多个视角来理解关键概念。本书并非详尽无遗,只是反映了作者兼收并蓄的行业背景,重点仍然是以最有表现力的方式呈现日常使用Python工作时涉及的基本概念和原理。
致谢
感谢Jupyter Notebook两位创始人Brian Granger和Fernando Perez的帮助,感谢他们所做的伟大工作,同时还要感谢整个Python社区人员,是他们的贡献让本书成为可能。Hans Petter Langtangen是DocOnce(DocOnce标记语言见https://githubcom/hplgit/doconce)文档准备系统的作者,本书使用该系统编写。感谢Geoffrey Poore对Python TeX和LaTeX的研究,本书的排版采用了这两种关键技术。
José Unpingco
美国加利福尼亚州圣地亚哥
2019年2月
|
|