新書推薦:
《
超加工人群:为什么有些食物让人一吃就停不下来
》
售價:HK$
99.7
《
历史的教训(浓缩《文明的故事》精华,总结历史教训的独特见解)
》
售價:HK$
62.7
《
不在场证明谜案(超绝CP陷入冤案!日本文坛超新星推理作家——辻堂梦代表作首次引进!)
》
售價:HK$
58.2
《
明式家具三十年经眼录
》
售價:HK$
524.2
《
敦煌写本文献学(增订本)
》
售價:HK$
221.8
《
耕读史
》
售價:HK$
109.8
《
地理计算与R语言 [英] 罗宾·洛夫莱斯 [德]雅纳·蒙乔 [波兰] 雅库布·诺沃萨德
》
售價:HK$
121.0
《
沈括的知识世界:一种闻见主义的实践(中华学术译丛)
》
售價:HK$
87.4
|
編輯推薦: |
(1)零基础也能快速入门。本书从基础的算法基础讲起,由浅入深,层层递进,在巩固固有知识的同时深入讲解人工智能的算法原理,无论读者是否从事计算机相关行业,是否接触过人工智能,都能通过本书实现快速入门。(2)理论和实践相结合。每章后提供根据所在章的理论知识点精心设计的“应用”,读者可以通过应用实例进行实践操作,为以后的算法学习奠定基础。(3)大量范例源码 习题答案,为学习排忧解难。本书所有示例都有清晰完整的源码,每章之后设有习题并配套题目答案,讲解清晰,解决读者在学习中的所有困惑。
|
內容簡介: |
当前AI图书市场,理论知识与实践经验的脱节,是很多书籍的缺点。《人工智能算法基础》立足于理论,从实例入手,将理论知识和实际应用结合,目标是让读者能够快速地熟悉人工智能中经典算法。全书分为4篇,共20章。其中第1篇为基础算法篇,主要讲述排序、查找、线性结构、树、队列、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,主要讲述分类算法、回归算法、聚类算法、降维算法和集成算法;第3篇为强化学习算法篇,主要讲述基于价值的强化学习算法和基于策略的强化学习算法;第4 篇为深度学习算法篇,主要讲述神经网络模型算法、循环神经网络算法和卷积神经网络算法等内容。
《人工智能算法基础》适合从事数据科学与人工智能相关行业的读者阅读。
|
關於作者: |
唐宇迪,计算机专业博士,网易云课堂人工智能认证行家,51CTO学院讲师,CSDN博客讲师。拥有多年人工智能领域培训经验,带领课程研发团队累计开发AI课程60余门,覆盖当下人工智能热门应用领域。2020年10月在我社出版《人工智能数学基础》,定价119元,印刷1.6万册。
史卫亚,,1973年4月出生,博士,副教授,IEEE会员,CCF会员,INNS会员。2009年获得复旦大学计算机应用专业博士学位。2015-2016年在美国北卡罗纳大学做访问学者,现执教于河南工业大学信息科学与工程学院。主要研究方向:机器学习、数据库、图像和视频处理、人工智能和模式识别。
罗召勇,B站人气网红讲师,录制的“数据结构与算法”“微信公众号开发”“分布式微服务架构(直播回放)”“微信公众号开发springboot版”视频课程发布于B站、腾讯课堂、网易云课堂、爱奇艺课堂等各大平台,累计播放量超50万,其中B站播放量30万余,获得网络学员的一致好评。1 X大数据职业技能等级考试出题人,1 X大数据职业技能等级考试师资培训专家,贵州省教育科学院官网项目技术指导。
|
目錄:
|
第0章 人工智能与算法1
0.1 人工智能发展的水平 2
0.2 人工智能技术总览 3
0.3 算法在人工智能技术中的地位 9
0.4 学好算法能有哪些竞争优势 10
第1章 排序算法12
1.1 冒泡排序(Bubble Sort) 13
1.2 直接插入排序(Insert Sort) 20
1.3 直接选择排序(Select Sort) 24
1.4 升级版冒泡排序——快速排序(Quick Sort) 26
1.5 升级版插入排序——希尔排序(Shell Sort) 29
1.6 升级版选择排序——堆排序(Heap Sort) 31
1.7 归并排序(Merge Sort) 34
1.8 基数排序(Radix Sort) 36
1.9 应用:应该使用哪种排序算法 40
1.10 高手点拨 42
1.11 编程练习 42
1.12 面试真题 42
第2章 查找算法43
2.1 线性查找(Line Search)——傻瓜式查找 44
2.2 二分查找(Binary Search)——排除另一半 44
2.3 插值查找(Insert Search)——预判位置 45
2.4 斐波那契查找(Fibonacci Search)——黄金分割法 46
2.5 树结构查找(Tree Search) 48
2.6 散列查找(Hash Search) 48
2.7 应用:自实现indexOf函数 49
2.8 高手点拨 49
2.9 编程练习 50
2.10 面试真题 50
第3章 字符串算法51
3.1 朴素算法 52
3.2 KMP算法 53
3.3 Boyer-Moore算法 55
3.4 Rabin-Karp算法 59
3.5 Trie树 59
3.6 应用:AC自动机算法 60
3.7 高手点拨 64
3.8 编程练习 65
3.9 面试真题 65
第4章 线性结构66
4.1 链表 67
4.2 栈 72
4.3 队列 73
4.4 应用:逆波兰计算器 74
4.5 高手点拨 81
4.6 编程练习 82
4.7 面试真题 82
第5章 树结构83
5.1 树结构概述 84
5.2 二叉树 84
5.3 线索二叉树 90
5.4 二叉查找树 92
5.5 K近邻算法与k-d树 111
5.6 赫夫曼树 119
5.7 多路查找树 134
5.7.1 2-3树 134
5.7.2 B树 140
5.7.3 B 树 140
5.8 高手点拨 141
5.9 编程练习 141
5.10 面试真题 142
第6章 堆结构143
6.1 二叉堆 144
6.2 d-堆 144
6.3 二项堆 145
6.4 斐波那契堆 148
6.5 左式堆 150
6.6 斜堆 152
6.7 应用:优先队列 152
6.8 高手点拨 153
6.9 编程练习 153
6.10 面试真题 153
第7章 散列结构154
7.1 散列概述 155
7.2 散列函数的设计 156
7.3 解决冲突 157
7.4 完美散列 160
7.5 应用 161
7.6 高手点拨 162
7.7 编程练习 162
7.8 面试真题 162
第8章 图结构163
8.1 图结构概述 164
8.2 图的存储 167
8.3 图的搜索 170
8.4 拓扑排序 173
8.5 应用:修路问题 175
8.6 高手点拨 178
8.7 编程练习 179
8.8 面试真题 179
第9章 递归算法180
9.1 递归的概述 181
9.2 应用:汉诺塔问题 183
9.3 高手点拨 185
9.4 编程练习 185
9.5 面试真题 185
第10章 分类算法186
10.1 分类算法概述 187
10.2 决策树 192
10.3 支持向量机 207
10.4 朴素贝叶斯算法 223
10.5 综合案例——基于SVM算法的癌症预测 231
10.6 高手点拨 235
10.7 编程练习 236
10.8 面试真题 236
第11章 回归算法237
11.1 回归算法概述 238
11.2 线性回归算法 238
11.3 逻辑回归算法 251
11.4 综合案例——信用卡欺诈检测 259
11.5 高手点拨 264
11.6 编程练习 266
11.7 面试真题 267
第12章 聚类算法268
12.1 聚类算法概述 269
12.2 K-means算法 270
12.3 K-means算法实践 276
12.4 DBSCAN算法 284
12.5 综合案例——图像分割 290
12.6 高手点拨 292
12.7 编程练习 293
12.8 面试真题 294
第13章 降维算法295
13.1 降维算法概述 296
13.2 主成分分析 296
13.3 线性判别分析 306
13.4 综合案例——基于PCA和逻辑回归算法对鸢尾花数据集分类 313
13.5 高手点拨 315
13.6 编程练习 316
13.7 面试真题 317
第14章 集成学习算法318
14.1 集成学习概述 319
14.2 Bagging算法 319
14.3 Boosting算法 321
14.4 XGBoost算法 322
14.5 综合案例——基于XGBoost算法的客户流失预测 335
14.6 高手点拨 346
14.7 编程练习 346
14.8 面试真题 347
第15章 基于价值的强化学习(Value-Based RL)算法348
15.1 强化学习 349
15.2 Q-Learning算法 351
15.3 DQN(Deep Q-Learning)算法 356
15.4 综合案例——让AI自主探索迷宫 363
15.5 高手点拨 366
15.6 编程练习 366
15.7 面试真题 366
第16章 基于策略的强化学习(Policy-Based RL)算法367
16.1 策略梯度(Policy Gradient)算法 368
16.2 Actor-Critic算法 377
16.3 综合案例——超级马里奥的实现 386
16.4 高手点拨 389
16.5 编程练习 389
16.6 面试真题 389
第17章 神经网络模型算法390
17.1 神经网络概述 391
17.2 神经元模型和神经网络模型 392
17.3 BP神经网络算法 39
17.4 综合案例——使用神经网络进行回归预测 403
17.5 高手点拨 407
17.6 编程练习 407
17.7 面试真题 408
|
內容試閱:
|
前言
为什么要写这本书?
2016 年,“AlphaGo”在人机围棋比赛中以大比分战胜中韩围棋高手,使“人工智能”迅速家喻户 晓。2017年 7月,国务院印发《新一代人工智能发展规划》,提出了面向 2030年我国新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国。
在这股人工智能浪潮中,快速掌握人工智能基本知识已经迫在眉睫。然而,在人工智能算法的学习过程中,很多初学者遭遇的挫折多半来自看不懂算法的数学推导过程,进而无法理解算法原理,在应用中只能调整参数或换工具包,却很难使用和优化算法。本书旨在帮助读者解决人工智能基本算法学习中遇到的困扰,帮助初学数据科学与人工智能的读者快速掌握基本算法知识和实际应用方法,为进一步使用人工智能算法解决实际问题打下基础。
本书学习路线
本书总结了作者多年的教学实践经验,为读者设计了的学习路线。
读者对象
◆已经开启职业生涯的人工智能研究者。
◆没有人工智能或统计学学习经历,但希望能快速地掌握这方面的知识,并在项目产品或平台
中使用人工智能的软件工程师。
◆相关专业的教师和学生。
本书特色
◆零基础也能入门。
无论您是否从事计算机相关行业,是否接触过人工智能,都能通过本书实现快速入门。
◆理论和实践相结合。
书中的“编程练习”板块是根据所在章节的理论知识点精心设计的,读者可以通过综合案例进行实践操作,理论联系实际,将所学算法应用于解决实际问题。
书中的“面试真题”板块选取了部分人工智能公司面试时可能会测验的经典算法题,这些题型不仅可以复习所学算法的主要知识点,而且便于读者对知识点加以总结,形成记忆。
作者团队
本书由唐宇迪、史卫亚、罗召勇、李琳、侯惠芳编著。其中第0、11、15~19章由史卫亚老师编写;第1~9章由罗召勇老师编写;第10、12章由李琳老师编写;第13、14章由侯惠芳老师编写,全书由唐宇迪统稿。在编写过程中,编者竭尽所能地为读者呈现好、全的实用基础知识,若仍存在疏漏和不妥之处,敬请广大读者指正。
|
|