David Ruppert 康奈尔大学运筹学和信息工程学院统计科学教授、Andrew Schultz, Jr.工程学教授,主要讲授统计学、金融工程等课程。他的研究领域包括渐近理论、半参数回归、函数型数据分析、生物统计、模型校准、度量误差和天文统计学。Ruppert教授拥有密歇根州立大学统计学博士学位,是美国统计协会和数理统计协会会员,并曾获得 Wilcoxon奖。 Ruppert教授发表了100多篇科技论文,撰写了4部著作: 《Transformation and Weighting in Regression》 《Measurement Error in Nonlinear Models》《Semiparametric Regression》和《 Statistics and Finance: An Introduction》。
前言本书是我在康奈尔大学教授金融工程研究生“金融工程统计”这一课程期间撰写完成的.这些学生原本已有投资组合管理、固定收益证券、期货、随机微积分等知识基础,因此我着重讲解了本书第4~9章和第17~20章的内容,包括统计学、数据分析和R软件的操作等.这些章节对于一个学期的课时来说已经绰绰有余.我在课程中并没有涉及回归(第12~14章、第21章)和第10章更为高级的时间序列,因为这些内容已包含在其他课程中.在过去,我选择不讲解协整分析的内容(第15章),但我会在今后的课程中讲解.由于金融工程的研究生会把第三个学期的大部分时间运用在投资银行或对冲基金这样的课题项目上.作为几个项目的指导教师,我认识到也有必要介绍协整分析的内容.本书也可以作为其他学科的教材使用.要讲授本书的大部分内容,一般需要两个学期的课时.一学期需要着重讲解金融知识,可以选择第11章和第16章关于投资组合以及CAPM的内容,而忽略一些统计内容,例如第8章、第18章和第20章关于copula模型、GARCH模型和贝叶斯统计的内容.有些熟悉我出版的《Statistics and Finance: An Introduction》一书的读者可能会问这两本书有何不同.本书相比较早出版的书来说内容进一步深化了,并且更广泛地涉及统计学的知识.正如书名所示,本书更注重实际的数据分析而非仅仅是一本导论.第8章、第15章、第20章中引入了一些新的知识:copula函数、协整分析、贝叶斯统计.除了一些数据与《Statistics and Finance: An Introduction》有类同之外,本书完全使用R软件处理计算、数据分析、绘图等工作,而前书则使用SAS和MATLAB软件.书中几乎全部案例的相关数据都能在R数据库中找到,因此读者可以自行再现这些案例.在第20章中,执行马尔可夫链蒙特卡罗过程时R软件需要安装R2WinBUGS软件包来执行WinBUGS这一命令.本书与前书有一些重叠之处,尤其在第2章、第3章、第9章、第11~13章、第16章中有许多内容是从前书中借鉴而来的.而与《Statistics and Finance: An Introduction》不同的是,本书并没有涉及期货定价和行为经济学的内容.阅读本书之前,最好掌握一定量的微积分、向量、矩阵、概率论和随机过程以及统计学的知识,达到金融工程、数学、统计学等相关专业大三或大四学生的专业知识水平.本书提供一个附录来帮助读者回顾一些概率论与统计学的内容,但附录意在给予参考而无法帮助零基础的同学熟悉这些知识.同时,也建议读者具备一定程度的计算编程能力,具备一些金融的基本概念也会有所帮助.本书并不会讲解R软件如何编程,但每章都有一个“R实验室”来处理和模拟数据.学生可以通过这些内容和R软件的帮助手册《An Introduction to R》学习更多关于R软件函数相关内容(帮助手册可以在CRAN网站上找到,也可以通过R的在线帮助获得).另外,本书也会对案例中用到的那些R函数进行讲解.有时R代码会用于介绍一些分析过程,例如第11章中使用二次规划寻找切线资产组合的案例.对于有意使用R软件的读者,每章最后的文献注记中介绍了一些R相关书目.我的“金融工程统计”课程的学生对R软件的了解程度不尽相同.有精通R编程的学生,同时也有零基础的学生,但大部分学生之前都接触过其他编程语言.对于那些之前没有接触过R软件的学生,一般需要老师的帮助来熟悉R实验室的操作,而自学的学生也最好先对R有一定了解,之后再尝试了解书中的案例.David Ruppert于纽约伊萨卡岛2010年7月