新書推薦:
《
形似神异:什么是中日传统政治文化的结构性差异
》
售價:HK$
55.8
《
养育不好惹的小孩
》
售價:HK$
77.3
《
加加美高浩的手部绘画技法 II
》
售價:HK$
89.4
《
卡特里娜(“同一颗星球”丛书)
》
售價:HK$
87.4
《
伟大民族:从路易十五到拿破仑的法国史(方尖碑)
》
售價:HK$
188.2
《
古今“书画同源”论辨——中国书法与中国绘画的关系问题兼中国画笔墨研究
》
售價:HK$
132.2
《
《日本文学史序说》讲演录
》
售價:HK$
72.8
《
无尽的海洋:美国海事探险与大众文化(1815—1860)
》
售價:HK$
99.7
|
編輯推薦: |
这是一部彻底颠覆经典物理学观念的创世之书。
现代及未来科学的*伟大的奠基之作
影响人类进程的不朽经典
没有别的科学家能比爱因斯坦更代表科学的先进性。
霍金
|
內容簡介: |
这本书由狭义相对论、广义相对论、探索整个宇宙三部分构成。狭义相对论的两个基本条件是:一、光速恒定原理;二、定律(尤其是光速不变定律)和所选择的惯性系(狭义相对性原理)没有关系。只有符合这两个条件,所讨论的内容才是有意义的;广义相对论是在狭义相对论的基础上发展起来的,它的假设是定律的不变性和四维连续区中的坐标的非线性变换有着一定的联系,在这个前提下讨论各种情况。在了解了狭义相对论和广义相对论之后,将研究范畴扩展到整个宇宙空间中,并认为宇宙是有限且无界的。
|
關於作者: |
爱因斯坦(18791955),20世纪著名的德裔美国科学家,现代物理学的开创者和奠基人,伟大的思想家和社会活动家。其他主要著作是:《论动体的电动力学》、《关于辐射的量理论》、《空间、时间和引力》、《物理学的哲学》等。
|
目錄:
|
第一章
狭义相对论
1.1 几何命题在物理学中的意义001
1.2 坐标系007
1.3 经典力学中的空间和时间011
1.4 伽利略坐标016
1.5 相对性原理(狭义)020
1.6 经典力学中的速度相加定理035
1.7 光的传播定律和相对性原理的表面抵触037
1.8 物理学中的时间观045
1.9 相对性的同时性052
1.10 距离的相对性056
1.11 洛伦兹变换058
1.12 量杆和时钟在运动状态的行为070
1.13 速度相加法则斐索实验076
1.14 评估相对论的启发作用084
1.15 一般相对论的普通结果087
1.16 经验和狭义相对论092
1.17 闵可夫斯基的四维空间100
第二章
广义相对论
2.1 狭义相对性原理和广义相对性原理107
2.2 重力场114
2.3 广义相对性公设的论据惯性质量等于引力质量121
2.4 经典力学和狭义相对论的基础中无法令人满意的方面126
2.5 由广义相对性原理得出的几个推论129
2.6 旋转参考物上的时钟和量杆的行为137
2.7 欧几里得连续区和非欧几里得连续区142
2.8 高斯坐标146
2.9 狭义相对论中的空间时间连续区可以看作欧几里得连续区151
2.10 广义相对论中的空间时间连续区不是欧几里得连续区154
2.11 广义相对性原理的精确表述158
2.12 在广义相对性原理的基础上解决地心引力问题162
第三章
对整个宇宙的考察
3.1 牛顿理论在宇宙论中遇到的困难171
3.2 有限而极大的宇宙的可能176
3.3 广义相对论基础上的空间结构179
3.4 对广义相对论基础上的空间结构的补充说明180
附 录
广义相对论的实验证实183
相对论和空间问题190
科学和宗教202
什么是相对论207
理论物理学的基础212
科学和文明220
|
內容試閱:
|
导 读
无论时代的潮流和社会的风俗怎样变化,人们总是可以凭借自己的能力超越时代和潮流,走在正确的道路上。现在,大家都在四处奔走,为的就是房子和车子,这是我们生活的时代的特征。不过,也有一些人追求的不是物质,而是理想和真理,想要寻求内心的自由和平静。
爱因斯坦
爱因斯坦讲述相对论
现在,我已经是67岁的老人了,今天要写一些类似于讣告的东西。我做这件事有两方面的原因,一是因为希耳普博士的劝说;二是因为我觉得和曾经一起奋斗的朋友们共同回顾我们的奋斗历程,这是一件很有意义的事情。经过考虑,我认为这种尝试一定会存在缺陷,而不是完美无缺的。无论一个人的工作生涯多么短暂、多么有限,在这个过程中肯定会走许多弯路,如果想要把有价值的东西讲述清楚,那的确是一件困难的事情。而且,我已经67岁了,不是50岁,更不是30岁或者20岁。任何回忆都会受到不可靠的信息的干扰,同时也会受到当前观点的影响。这是难以避免的,也令人非常气馁。然而,一个人还是可以从自己的积累中提炼出别人所不知道的东西。
当我处于少年时期的时候,我就深深地意识到,大部分人一辈子追求的目标和想要实现的愿望,都是没有一点价值的。不久后,我发现当时追逐的残酷性经过了精心的掩饰和巧妙的伪装,与现在赤裸裸的追逐有着明显的区别。由于每个人都有一个胃,所以注定人人都要参加这种追逐。因为参与了这种追逐,所以胃也许会得到满足。不过,人绝对不会,因为他有自己的思想和独立的情感。宗教是帮助人们摆脱这种困境的第一种方法,它通过教育的方式引导儿童前进。因此,虽然我的父母都没有宗教信仰,但我有着深深的宗教信仰。不过,当我12岁的时候,我终止了这种信仰。在科普书籍的影响下,我深信《圣经》中的许多故事都是虚构的。结果,在我经过了一场疯狂的自由考虑后发现,国家总是用谎言去欺骗年少无知的人。这个事实令人难以相信。这次经历让我对权威不再深信不疑,也会用怀疑的态度去看待社会中有着各种作用的信念。我的这种怀疑态度始终存在,尽管后来对因果关系的研究使它原有的尖锐性降低许多。
显然,我往前跨出去的第一步是抛弃少年时代的宗教信仰。这让我摆脱了原始的锁链,从愿望、期待、原始情感的统治中解放出来。在我们人类的外面,有一个独立存在的巨大世界,它就像是一个难以破解的谜团,我们通过仔细观察和认真思考只能部分地接近它。对于这个世界的思索,就像是响应自由的召唤。而且,我很快就发现,许多我敬佩和仰慕的人都在这种追求中体会到内心的自由和平静。在我力所能及的范围内,努力探索这个人类之外的世界,这成了心目中的最高目标。过去和现在受到相同激励的人们,以及他们所取得的真知灼见,都是我渴望得到的朋友。尽管通向这个天堂的道路是曲折的,远远没有通往宗教天堂的道路平坦,但事实证明这条路是可以信赖的,我从来没有后悔选择了它。
我所说的这些内容,只是在一定程度上是正确的,就像在一张白纸上勾勒出来的简单图画,只能在有限的意义上忠实于细节错综复杂的对象。如果一个人的思想很有条理,那么,他的天性可能会牺牲其他方面来促使这方面发展得更好,而且这方面会决定他的精神风貌。在这种情况下,这种人在回忆时看到的可能是单一的、系统的发展,而他的实际经验来自于千变万化的具体情境。外部情境的多变性和瞬间意识的有限性,导致每个人的生活都会出现模糊性。像我这样的人,成长的转折点是让自己从稍纵即逝的、纯粹的个人层面中解脱出来,转而从思想上去把握事物的本质。这样的转折有着重要的意义。从这个角度来说,上面通过简单文字进行的概述,包含了许多真理。
第一章 狭义相对论
1905年,爱因斯坦发表了一篇论文,标题是《论动体的电动力学》,标志着狭义相对论的诞生。同年,他又发表了《物体的惯性同它所包含的能量有关吗?》这篇文章,对开始提出的理论进行了补充说明。根据这个理论可知,物质运动、时间、空间这三者之间有着紧密的联系,它们都不是独立存在的。随着物体运动的增加,质量会增加,时间和空间也会发生变化,运动物体在运动方向上的长度会变短,时间会变慢。也就是说,当物体消失的时候,时间和空间也会消失。这个理论让我们明白,为什么原子内部有着巨大能量。随着时间的推移,狭义相对论经受住了实践的检验,在现代物理学中有着重要的作用,也是一个不可或缺的基础理论。
1.1 几何命题在物理学中的意义
欧几里得的几何学是一座宏伟的大厦,当阅读这本书的读者处于学生时代的时候,大家就在这座大厦的楼梯上摸索了,尽忠职守的教师们逼迫你们在这上面花费了许多时间。关于这座宏伟的大厦,你们的畏惧之心要远远大于好奇之心。根据以往的经验,如果有人告诉你们这门科学中的命题都是不真实的,即使是最冷僻的命题也一样,你们一定不会相信。不过,如果有人反问你们:既然这些命题都是真实的,那么,它们要怎样去理解呢?这时,你们也许会失去理所当然的态度。现在,让我们认真讨论一下这个问题。
平面、点、直线等概念组成了几何学,一般来说,我们脑海中的观念和几何学中的一些简单命题有着一定的联系,受到这些观念的影响,我们总是把命题当作真理来对待。然后,用我们心中的逻辑方法,也就是我们认为是正确的逻辑推理过程,证明命题是从公理中推导出来的,即这些命题得到了验证。于是,只要用公认的方法从公理中推导出来的命题,我们就认为是正确的。这样一来,公理的真实性决定了几何命题的真实性。不过,这样的说法根本毫无意义,而且无法用几何学的方法进行证明。难道我们要问这样的问题:经过两点只有一条直线的说法是不是正确的呢?显然,这是不可能的。我们只能这样说,几何学研究的是直线,唯一能够说明的是每条直线上的两个点确定了这条直线的性质。真实这个概念是由这条直线上的两个点确定的唯一一个性质。不符合几何学论点的是,在习惯上,真实和实在的客体有着相同的含义;然而,不管怎么说,几何学的内容并不包含其中的观点和经验客体之间的联系,仅仅包含这些观念本身在逻辑上存在的联系。
很容易理解,我们为什么会把这些几何命题称之为真理。几何观念对应着自然界中具有形态的客体,而这些客体促成了这些观念的诞生。不过,几何学要去阻止这个过程,以便它的结构有最大的逻辑一致性。例如,根据我们的习惯,总是通过可以当作固定物体上的两个点来确定距离。当我们在观察三个点的时候,如果选择合适的观察位置,让三个点的视位置能够重合在一起,我们就觉得这三个点在同一条直线上。
按照我们的思维习惯,在欧几里得几何学中,我们可以添加这样的命题:一个可以看出是固定的物体上的两个点对应的距离永远不变,无论这个物体的位置是否会发生变化,那么,欧几里得几何学中的命题也可以称为所有固定物体的相对位置的命题。这样一来,几何学就会成为物理学的一个分支。现在,我们能够合理地解释几何命题是不是真理这个问题。我们还要去问,那些和几何观念有着密切联系的真实东西,这些命题是否已经满足了它们。通过精确的术语来表达就是:我们把具有这种意义的几何命题的真实性理解为用圆规和直尺对该几何命题作图的有效性。
当然,这样就去断定几何命题的真实性好像不太恰当,因为凭借的是不完整的经验。不过,我们只是暂时认定这种真实性。然后,在后面的内容中我们会发现,这种真实性是有限制条件的,到时我们再去讨论具体的适用范围。
1.1 几何命题在物理学中的意义
在汉语词典中,几何这个词的含义是多少。不过,在数学中,几何这个词来源于希腊文,本来的含义是土地测量,或者测地术。
几何学是数学的一个分支,研究的是空间和图形性质。
远古时期,人们在实践生活中积累了许多关于平面、直线、方、圆、长、短、宽、窄、厚、薄等知识,后来,这些知识成了几何学的基本概念。
公元前1700年,埃及的阿默斯手写了一本书,这本书的名字是阿默斯手册,里面记载了许多测量面积的方法,还有一些关于金字塔的几何问题。
在古希腊,泰勒(约公元前640年前546年)、毕达哥拉斯(约公元前582年前493年)、依卜加(约公元前430年?)、柏拉图(约公元前427年前347年)、欧几里得(约公元前330年前275年)等著名的数学家,对几何学有着重大贡献。
曾经,泰勒发现了一些几何定理及其证明方法,这就是理论几何的起点。他可以利用几何定理解决实际中的问题,凭借一根竹竿测量金字塔的高度。
毕达哥拉斯认为数学是一门基本科学,它是所有学问的基础。他花费了许多时间去研究几何学,提出了勾股定理,在西方还被称为毕达哥拉斯定理。
依卜加编写了世界上第一本初等几何教科书。在这本书中,他首次提出了反证法,和柏拉图一起称为研究几何三大问题(①化圆为方,求一个正方形的面积等于一个已知圆的面积;②三等分任意角;③倍立方,求一个立方体的体积等于一个已知立方体体积的两倍)的著名人士,并且找到了许多几何定理。
柏拉图创造了在现在证题时有着重要作用的分析法,还提出了用缜密的定义和明晰的公理当作几何学基础的思想。
欧几里得把已有的几何知识进行总结,提出了有着严密理论的几何学。
欧几里得是古希腊著名的数学家。早年,他在雅典读书,非常清楚柏拉图的学说。约公元前300年,在托勒密王(公元前364年前283年)的邀请下,前往亚历山大城工作,一直从事教学、研究、著述等工作,熟知数学、天文、光学、音乐等各个领域。欧几里得著名的作品有《几何原本》《已知数》《纠错集》等。
《几何原本》一共有13卷,由5条公设、5条定理、119个定义、465个命题组成,这是世界上的第一个数学公理体系。在这本书中,欧几里得确定了点、线、面、角、垂直、平行等定义,还说明了关于几何和量的10条公理,公理后面紧跟着命题和相关证明。《几何原本》给出了数学中的基本方法学:①提出了公理演绎体系,那就是通过公理、公设、定义去进行推证;②在数学中引入逻辑证明系统,确立了逻辑学的基本方法;③建立了几何证明方法:分析法、综合法、归谬法。
随着《几何原本》的诞生,几何成为一个真正的学科,有着严密的理论体系和科学的证明方法。
17世纪,笛卡儿在几何学中引入坐标系,这个做法带给几何学飞跃性的发展。笛卡儿通过数学方法解决几何问题,这就产生了解析几何。
1799年,法国著名的数学家蒙日的著作《画法几何》出版,他在这本书中提出用多面正投影图表示空间中的物体,画法几何诞生了。
1822年,彭赛列的著作《论图形的射影性质》一书出世,奠定了射影几何学的基础。
19世纪初期,蒙日在研究曲线和曲面的时候引入微积分,并在1807年发表了《分析在几何学上的应用》这本书,这是最早一部关于微分几何的著作。这时,数学中的另一个分支诞生了,那就是微积分。后来,高斯的著作《关于曲面的研究》一书,为曲面论奠定了坚实的基础。
黎曼把高斯的曲面论进行拓展,形成了黎曼几何学。
20世纪初期,相对论的问世使黎曼几何学向前发展了一大步。20世纪中期,数学中新的分支拓扑学、微分方程、抽象代数等学科的发展,促使整体几何成为现代几何学的主题部分,在理论物理中有着重要的作用。
物理和数学的关系
物理学简称为物理,物理这个词来源于希腊文,最初的含义是自然。古时的欧洲人把物理学叫作自然哲学。明末清初的科学家方以智在他的著作《物理小识》中,首次提到了物理这个词,这是一本类似于百科全书的作品。从广泛意义上而言,物理学研究的是大自然现象及其规律。物理学家们要去研究不同空间和不同时间的物质状态,研究物质结构和物体的运动规律。现在,物理学是自然科学中的一个基础学科,有着重要的意义。一般来说,总是用数学形式表示物理学理论。如果物理学规律经过了大量的实验验证,那么,物理学规律就会变成物理学定律。不过,类似于其他的自然科学理论,有些物理学定律只能通过反复的实验去检验,而不能被证明。
数学是组成人类文化的基本元素之一,它的语言是人类文化的有机组成部分。
数学的研究对象是现实世界中的空间形式和数量关系,主要内容是算术、代数、几何、三角、微积分等,主要特点是高度的符号化、抽象化、形式化、逻辑化和简单化。数学与逻辑学、哲学的关系更加密切,凭借几个基本公理就可以构建一个逻辑体系
|
|