新書推薦:
《
逃不开的科技创新战争
》
售價:HK$
103.3
《
漫画三国一百年
》
售價:HK$
55.2
《
希腊文明3000年(古希腊的科学精神,成就了现代科学之源)
》
售價:HK$
82.8
《
粤行丛录(岭南史料笔记丛刊)
》
售價:HK$
80.2
《
岁月待人归:徐悲鸿自述人生艺术
》
售價:HK$
61.4
《
女人的中国医疗史:汉唐之间的健康照顾与性别
》
售價:HK$
103.8
《
资治通鉴熊逸版:第四辑
》
售價:HK$
470.8
《
中国近现代名家精品——项维仁:工笔侍女作品精选
》
售價:HK$
66.1
|
編輯推薦: |
随着大规模资源分配、信号处理、机器学习等应用领域的快速发展,凸优化近来正引起人们日益浓厚的兴趣。本书力图给大家较为全面通俗地介绍求解大规模凸优化问题的*算法。本书几乎囊括了所有主流的凸优化算法。包括梯度法,次梯度法,多面体逼近法,邻近法和内点法等。这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或间接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。
|
內容簡介: |
本书几乎囊括了所有主流的凸优化算法。包括梯度法、次梯度法、多面体逼近法、邻近法和内点法等。这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或间接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。各章的内容如下: 第1章,凸优化模型概述; 第2章,优化算法概述; 第3章,次梯度算法; 第4章,多面体逼近算法; 第5章,邻近算法; 第6章,其他算法问题。本书的一个特色是在强调问题之间的对偶性的同时,也十分重视建立在共轭概念上的算法之间的对偶性,这常常能为选择合适的算法实现方式提供新的灵感和计算上的便利。
|
目錄:
|
Contents
1. Convex Optimization Models: An Overview . . . . . . p. 1
1.1. LagrangeDuality .......... .......... p.2
1.1.1. Separable Problems Decomposition . . . . . . . . . p. 7
1.1.2. Partitioning .................... p.9
1.2. Fenchel Duality and Conic Programming . . . . . . . . . . p. 10
1.2.1. LinearConicProblems . . . . . . . . . . . . . . . p.15
1.2.2. Second Order Cone Programming . . . . . . . . . . . p. 17
1.2.3. Semide.nite Programming . . . . . . . . . . . . . . p. 22
1.3. AdditiveCostProblems . . . . . . . . . . . . . . . . . p.25
1.4. LargeNumberofConstraints . . . . . . . . . . . . . . . p.34
1.5. ExactPenalty Functions . . . . . . . . . . . . . . . . p.39
1.6. Notes,Sources,andExercises . . . . . . . . . . . . . . p.47
2. Optimization Algorithms: An Overview . . . . . . . . p. 53
2.1. IterativeDescentAlgorithms . . . . . . . . . . . . . . . p.55
2.1.1. Di.erentiable Cost Function Descent Unconstrained . . . . Problems
..................... p.58
2.1.2. Constrained Problems Feasible Direction Methods . . . p. 71
2.1.3. Nondi.erentiable Problems Subgradient Methods . . . p. 78
2.1.4. Alternative Descent Methods . . . . . . . . . . . . . p. 80
2.1.5. IncrementalAlgorithms . . . . . . . . . . . . . . . p.83
2.1.6. Distributed Asynchronous Iterative Algorithms . . . . p. 104
2.2. ApproximationMethods . . . . . . . . . . . . . . . p.106
2.2.1. Polyhedral Approximation . . . . . . . . . . . . . p. 107
2.2.2. Penalty, Augmented Lagrangian, and Interior . . . . . . .
PointMethods .................. p.108
2.2.3. Proximal Algorithm, Bundle Methods, and . . . . . . . . .
TikhonovRegularization . . . . . . . . . . . . . . p.110
2.2.4. Alternating Direction Method of Multipliers . . . . . p. 111
2.2.5. Smoothing of Nondi.erentiable Problems . . . . . . p. 113
2.3. Notes,Sources,andExercises . . . . . . . . . . . . . p.119
3. SubgradientMethods . . . . . . . . . . . . . . . p.135
3.1. Subgradients of Convex Real-Valued Functions . . . . . . p. 136
iv
Contents
3.1.1. Characterization of the Subdi.erential . . . . . . . . p. 146
3.2. Convergence Analysis of Subgradient Methods . . . . . . p. 148
3.3. .-SubgradientMethods ................ p.162
3.3.1. Connection with Incremental Subgradient Methods . . p. 166
3.4. Notes,Sources,andExercises . . . . . . . . . . . . . . p.167
4. Polyhedral Approximation Methods . . . . . . . . . p. 181
4.1. Outer Linearization Cutting Plane Methods . . . . . . p. 182
4.2. Inner Linearization Simplicial Decomposition . . . . . . p. 188
4.3. Duality of Outer and Inner Linearization . . . . . . . . . p. 194
4.4. Generalized Polyhedral Approximation . . . . . . . . . p. 196
4.5. Generalized Simplicial Decomposition . . . . . . . . . . p. 209
4.5.1. Di.erentiableCostCase . . . . . . . . . . . . . . p.213
4.5.2. Nondi.erentiable Cost and Side Constraints . . . . . p. 213
4.6. Polyhedral Approximation for Conic Programming . . . . p. 217
4.7. Notes,Sources,andExercises . . . . . . . . . . . . . . p.228
5. ProximalAlgorithms . . . . . . . . . . . . . . . p.233
5.1. Basic Theory of Proximal Algorithms . . . . . . . . . . p. 234
5.1.1. Convergence ................... p.235
5.1.2. RateofConvergence. . . . . . . . . . . . . . . . p.239
5.1.3. Gradient Interpretation . . . . . . . . . . . . . . p. 246
5.1.4. Fixed Point Interpretation, Overrelaxation, . . . . . . . . .
andGeneralization ................ p.248
5.2. DualProximalAlgorithms . . . . . . . . . . . . . . . p.256
5.2.1. Augmented Lagrangian Methods . . . . . . . . . . p. 259
5.3. Proximal Algorithms with Linearization . . . . . . . . . p. 268
5.3.1. Proximal Cutting Plane Methods . . . . . . . . . . p. 270
5.3.2. BundleMethods ................. p.272
5.3.3. Proximal Inner Linearization Methods . . . . . . . . p. 276
5.4. Alternating Direction Methods of Multipliers . . . . . . . p. 280
5.4.1. Applications in Machine Learning . . . . . . . . . . p. 286
5.4.2. ADMM Applied to Separable Problems . . . . . . . p. 289
5.5. Notes,Sources,andExercises . . . . . . . . . . . . . . p.293
6. Additional Algorithmic Topics . . . . . . . . . . . p. 301
6.1. GradientProjectionMethods . . . . . . . . . . . . . . p.302
6.2. Gradient Projection with Extrapolation . . . . . . . . . p. 322
6.2.1. An Algorithm with Optimal Iteration Complexity . . . p. 323
6.2.2. Nondi.erentiable Cost Smoothing . . . . . . . . . p. 326
6.3. ProximalGradientMethods . . . . . . . . . . . . . . p.330
6.4. Incremental Subgradient Proximal Methods . . . . . . . p. 340
6.4.1. Convergence for Methods with Cyclic Order . . . . . p. 344
Contents
6.4.2. Convergence for Methods with Randomized Order . . p. 353
6.4.3. Application in Specially Structured Problems . . . . . p. 361
6.4.4. Incremental Constraint Projection Methods . . . . . p. 365
6.5. CoordinateDescentMethods . . . . . . . . . . . . . . p.369
6.5.1. Variants of Coordinate Descent . . . . . . . . . . . p. 373
6.5.2. Distributed Asynchronous Coordinate Descent . . . . p. 376
6.6. Generalized Proximal Methods . . . . . . . . . . . . . p. 382
6.7. .-Descent and Extended Monotropic Programming . . . . p. 396
6.7.1. .-Subgradients .................. p.397
6.7.2. .-DescentMethod........ ......... p.400
6.7.3. Extended Monotropic Programming Duality . . . . . p. 406
6.7.4. Special Cases of Strong Duality . . . . . . . . . . . p. 408
6.8. InteriorPointMethods . . . . . . . . . . . . . . . . p.412
6.8.1. Primal-Dual Methods for Linear Programming . . . . p. 416
6.8.2. Interior Point Methods for Conic Programming . . . . p. 423
6.8.3. Central Cutting Plane Methods . . . . . . . . . . . p. 425
6.9. Notes,Sources,andExercises . . . . . . . . . . . . . . p.426
Appendix A: Mathematical Background . . . . . . . . p. 443
A.1. LinearAlgebra ........... ......... p.445
A.2. TopologicalProperties . . . . . . . . . . . . . . . . p.450
A.3. Derivatives ..................... p.456
A.4. ConvergenceTheorems . . . . . . . . . . . . . . . . p.458
Appendix B: Convex Optimization Theory: A Summary . p. 467
B.1. Basic Concepts of Convex Analysis . . . . . . . . . . . p. 467
B.2. Basic Concepts of Polyhedral Convexity . . . . . . . . . p. 489
B.3. Basic Concepts of Convex Optimization . . . . . . . . . p. 494
B.4. Geometric Duality Framework . . . . . . . . . . . . . p. 498
B.5. Duality andOptimization . . . . . . . . . . . . . . . p.505
References .............. ......... p.519
Index ................. ......... p.557
|
|