第一章绪论
当今世界,发达国家生产力水平的先进性主要体现之一是其自动化程度,这是因为自动化可以显著提高生产设备的工作精度和速度,使设备在人不宜直接参与的环境中工作;弥补人类自身在感知、决策与操作诸方面的准确、快速和能力上的不足等。而自动化技术的基础是控制科学,自动控制作为解放人类生产力的至关重要的手段,从工农业生产、交通运输、电力、能源与资源的科学合理利用、计算机和通信网络、机器人、航空航天、武器装备乃至人类经济活动、社会管理等方面,已经渗透到人类社会的各个领域。因此,作为自动化技术的基础的控制科学,是当今社会科学技术进步的最主要的动力之一。
本报告中所论及的控制科学只是自动化科学的一部分,而且是实现自动化的核心。控制科学的定位是:在信息科学的意义下,研究与控制器(或控制平台)设计与实现有关的科学问题。控制器是针对给定系统与对系统的性能要求,使其接入后系统能自动满足性能要求的装置。这种装置的核心在信息丰富时代应为执行一些算法的计算装置。
控制科学起源于人类认识与改造世界的实践活动,控制科学跟一般的自然科学在目的性上有一个明显的区别,它更侧重于在认识世界的基础上改造世界。因此控制科学更多地具有“使能科学”的特征,它所研究的问题常可归结为能否做和怎样做两类,具有明显的技术科学特征。很多学科对控制科学的形成与发展做出过贡献,包括力学、理论和应用数学、计算机科学、航空与航天、机械与电气工程、运筹学和经济学,以及化学、物理学和生物科学等。控制科学的每一次重要的突破都是来自解决实际问题的技术需求和总结实际问题的理论需求。瓦特(Watt)关于蒸汽机的离心调速器的发明和麦克斯韦(Maxwell)的论文《论调节器》标志着现代意义上控制器的出现和最早分析有控制器参与其中的科学论文的发表。布莱克(Black)负反馈放大器的发明、奈奎斯特(Nyquist)频域稳定性分析方法和Bode的对数特性的广泛有效的应用与根分布法一起构成了以比例积分微分PID控制方法为核心的经典控制理论;这些理论与方法是建立在对系统描述采用传递函数与频率特性之上的,拉普拉斯(Laplace)变换和傅里叶(Fourier)变换为这类方法提供了理论支持,同时这类方法具有明显的物理与工程应用的特征,并已成功地在飞机和导弹自动驾驶仪、火炮跟踪系统和过程控制等中得到应用。反映系统动态特性的微分方程是另一类对控制系统进行描述的方法,它出现在20世纪40年代,60年代卡尔曼(Kalman)针对系统多变量控制的要求,对线性时不变系统提出了状态空间理论,为控制科学的理论研究提供了很好的理论框架。雷达、火炮和导航技术的需求导致了维纳滤波和预卜理论的出现,卡尔曼滤波的理论与方法使滤波这类问题的解决建立在可计算与设计之上,从而有效地推动了工程应用,如阿波罗登月;在实际工程中控制常受到各种限制,如幅值、功率、总能量等方面的限制,这类限制常表现为控制函数只能在有界闭集中选取,经典的变分法求最优函数所导出的Euler方程是建立在可取函数必须在开集上进行变分这一基础之上的。为了解决具闭集约束条件下的最优函数的求取,苏联学者庞特里亚金(L.S.Pontryagin)等创立了极大值原理,作为存在闭集约束条件下最优控制应满足的必要条件;美国学者R.Bellman基于资源规划创立了解决约束条件下最优控制问题的动态规划方法,提出了最优性原理,他们共同建立了最优控制理论,这些都为现代控制理论奠定了基础。在解决飞机在参数大范围变化中稳定性问题时,最初由麻省理工学院(MIT)学者提出了自适应控制的MIT方法,经由Astrom和Landau从两个不同角度发展形成的自适应控制,已成功地在工业部门得到广泛的应用;为了解决实际工程中系统建模的不确定性问题,Zames、Doyle、Kharitonov等人以不同的数学方法发展和完善了鲁棒控制理论,目前这些已经成为解决工程控制问题的主流控制方法。
通过梳理控制科学的发展历程,不难看出,控制科学发展的动力主要来自实际需求,实际需求促使我们建立新的理论与方法,学科本身的逻辑发展促使理论与方法得到深化和完善并向其他领域延拓。这启发我们应该从战略发展的角度出发根据当今时代信息丰富的特征,归纳总结重大需求和学科的逻辑发展带来的关键科学问题,分析控制科学新的重大需求、新的科技进展对控制科学发展提供的机遇和条件、控制学科发展的瓶颈和新的可能的学科生长点等。
计算机、数据处理、通信和传感技术迅速发展是信息丰富时代的主要特征,这为扩展控制对经济及国防需要的贡献提供了空前的机遇。控制科学要充分利用这一机遇,迎接新的挑战,推进学科发展,扩展应用领域,以适应这种时代特征。广泛的分布式计算、覆盖全球的通信网络、日益精确的种类繁多的传感系统的出现,为我们提供了海量的可供利用的数据和信息。有效地利用这些新的条件能极大地提高我们处理问题的能力,以及处理问题的速度、广度和深度,这使得我们有能力用以前不敢想象的方法去解决更为困难和复杂的问题,这将对控制科学从理论到应用的发展产生意义深远的影响。
当今控制科学面临的挑战来自三个方面。
(1)人类对控制系统提出日益严格的要求,这表现为:极端的工作环境,高精度与高质量,工作高复杂性(非线性、不确定性、时变性、多耦合与高动态等)。
(2)宏观尺度下遵循经典物理规律的控制科学向其他领域的扩展,如量子控制、基因调控、认知科学等。
(3)信息丰富时代为控制科学带来了新的特征,这体现在四个方面。①控制有时不再是针对单个对象或系统,而是面对一个相互有信息联系的系统集合或系统群,如网络,也可以是面对一个具有不同时间尺度分层递阶结构的系统集合。②控制科学的理论不只是表现为一种单纯的数学方法和理论,更体现为一种以数学、工程学和信息科学为基础的计算机算法相结合的方式。计算机不再仅仅是仿真和计算手段,而成为控制本身的一个关键组成。③软件系统开始与物理系统以日益一体化的方式相结合。一体化的控制将成为未来控制系统设计的一种重要方式。④控制系统的日益复杂使得控制的可靠性成为必须高度重视的问题。系统可靠水平要求远超过单个部件能达到的可靠性,需要我们利用不可靠的部件建造非常可靠的系统。即使个别的部件失效的时候,大多数工程系统必须继续工作。这正促使我们改变传统控制科学各种观点和理论,努力去适应这一变化,也激励我们尝试用全新的思路和方法去迎接这种挑战。
在近30年里,国内外对控制科学如何发展这一问题一直给予了极大的关注,过去对中国控制界产生重要影响的国际报告主要有三个。
第一个报告是1986年由52位世界知名控制教授开会后起草的Challenge to Control —— A Collective View(发表在IEEE Trans.Automatic Control,第2卷第32期,1987年,第271~第285页)。这一报告发表正值里根提出“主动防御”计划(即“星球大战计划”)之时,在美国控制正被十分看好,而这些教授明确地提出控制正面临挑战的论断是有深远意义的。
第二个报告是1988年年底由美国工业与应用数学学会(SIAM)、美国科学基金会和三军研究部门共同组织的一个研讨会(该研讨会准备了两年)(Report of the Panel on Future Direction in Control Theory,1988),会后提出了“Report of the Panel on Future Direction in Control Theory:A Mathematic Perspective,SIAM Reports on Issue in the Mathematic Sciences,1988”。这是一个针对将控制理论视为数学的一个分支的研究报告,报告中指出控制理论是一门数学、工程学与计算机结合的科学。报告在分析大量事实以后指出:①控制理论的任何重大突破都是由重要的应用课题推动的;②计算机在控制中起着十分重要的作用,应将控制规律转化成计算机算法与软件;③数学不仅体现在控制系统的核心控制律和系统的有效分析上,而且是控制方法和对应算法软件的基础。
第三个报告是2002年由几位国际控制界知名教授撰写的(Murray,et al.2003),Control in an Information Rich World: Report of the Panel on Future Directions in Control,Dynamics and Systems。这一报告同样经历了两年的讨论才得以完成。从报告的题目就可以看出当今控制科学发展的时代特征是信息丰富。同时,报告也明确指出当今控制器的设计在本质上就是关于计算机算法的设计,这样的结论正是分析了信息丰富的时代特点、各种领域中控制科学应用与发展的状况而得到的。
在国内外还有很多学者撰写过一些有关控制科学或其一些学科分支的综述报告(Guo et al.,1999;郭雷,2011;2012;黄琳等,2011;Vinvent et al.,1995;European Commission,2000)。此外,中国自动化学会在中国科学技术协会组织下于2007年和2010年分别组织撰写出版了两本《控制科学与工程学科发展报告》(中国科学技术协会等,2008;中国科学技术协会和中国自动化学会,2011),控制理论专业委员会从2009年开始组织了五次“控制科学与工程的前沿论坛”。为了做好“控制科学”发展战略的研究工作,我们先后举办了两次研讨会,分别于2011 年9 月24~25 日在北京大学和2012 年4 月7~8 日在中南大学举行,同时我们又主持了2012年9月5~6日在东北大学举办的“控制科学的前沿与挑战”技术科学论坛。国内外学者和专家在这三次会议上共做了45个综述报告,会议从控制理论、过程控制、航空航天与运动体、网络、交叉学科及其他、特邀报告六个方面在控制科学所涉及的研究领域进行了深入交流与讨论。项目研讨期间,不少学者在《自动化学报》上发表了系列综述论文(包为民,2013;柴天佑等,2013;陈关荣,2013;陈虹等,2013;陈杰等,2013;陈宗基等,2013;桂卫华等,2013;黄琳,2013;姜钟平和黄捷,2013;吕灵灵等,2013;梅生伟和朱建全,2013;谭民和王硕,2013;王飞跃,2013;王乐一和赵文虓,2013;王沛和吕金虎,2013;王巍,2013;王行愚等,2013;席裕庚等,2013;游科友和谢立华,2013;张化光等,2013;周东华等,2013),与此同时,五个分组又分别用举办会议、邮件通信等方式讨论形成了分组报告,本报告就是在这些准备工作的基础上形成的。
本篇将在回顾控制科学发展历程的基础上,通过总结其成功经验,对当前新的挑战下控制科学可能的发展做出阐述,并提出新形势下促进其发展的建议。我们不可能面面俱到地在报告中讨论控制科学所涉及的所有领域,而是关注那些最为基础的,以及那些对当今和未来世界有重大影响和需求的重要领域。本篇将在后文中主要介绍四部分内容——控制科学的定位与学科分支,历史回顾与启示,现状分析与探讨,需求分析、思考与建议。
从上述内容可以看出,我们并不打算也不具备这样的能力去指出未来的控制应该做什么和什么一定可以做出来,这是由于一方面,科学进程从社会的层面是难以预测的,而任何科学成果的真正价值必须经过时间的检验才能体现出来;另一方面,重要的科学进展又往往是在十分自由宽松的学术氛围内经过长期研究而得到的,而且多数是在个人的兴趣与意愿推动下冒出来的。基于此,我们将把发展战略的研究和阐述放在回顾历史寻求启示,分析现状提出问题,思考面临的科技形势与需求并提出一些建议上。由于是在一个覆盖面很大且与高技术联系密切的领域做这样的事,从不同的角度与视野进行分析就必然会有意义有别、深浅不同的必要的重复。