登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』视频分析算法60讲

書城自編碼: 2496107
分類:簡體書→大陸圖書→工業技術電子/通信
作者: 谢剑斌 等编著
國際書號(ISBN): 9787030423696
出版社: 科学出版社
出版日期: 2014-11-01
版次: 1 印次: 1
頁數/字數: 264/330000
書度/開本: 16开 釘裝: 平装

售價:HK$ 205.4

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
中国常见植物野外识别手册:青海册
《 中国常见植物野外识别手册:青海册 》

售價:HK$ 76.2
三星堆对话古遗址(从三星堆出发,横跨黄河流域,长江流域,对话11处古遗址,探源多元一体的中华文明)
《 三星堆对话古遗址(从三星堆出发,横跨黄河流域,长江流域,对话11处古遗址,探源多元一体的中华文明) 》

售價:HK$ 87.4
迷人的化学(迷人的科学丛书)
《 迷人的化学(迷人的科学丛书) 》

售價:HK$ 143.4
宋代冠服图志(详尽展示宋代各类冠服 精美插图 考据严谨 细节丰富)
《 宋代冠服图志(详尽展示宋代各类冠服 精美插图 考据严谨 细节丰富) 》

售價:HK$ 87.4
形似神异:什么是中日传统政治文化的结构性差异
《 形似神异:什么是中日传统政治文化的结构性差异 》

售價:HK$ 55.8
养育不好惹的小孩
《 养育不好惹的小孩 》

售價:HK$ 77.3
加加美高浩的手部绘画技法 II
《 加加美高浩的手部绘画技法 II 》

售價:HK$ 89.4
卡特里娜(“同一颗星球”丛书)
《 卡特里娜(“同一颗星球”丛书) 》

售價:HK$ 87.4

 

建議一齊購買:

+

HK$ 183.2
《HFSS射频仿真设计实例大全》
+

HK$ 127.2
《医学电镜技术及应用》
+

HK$ 119.3
《电子工程师自学速成——提高篇》
+

HK$ 87.9
《LED照明技术与灯具设计》
+

HK$ 76.7
《光电子材料与器件》
內容簡介:
为使读者全面了解视频分析算法的历史、思想、原理,《视频分析算法60 讲》详尽地介
绍了60 多种有关视频分析的算子、描述子、滤波、变换、方法的基本理论,
深入地阐述了视频分析算法的改进措施和实验仿真,系统地总结了其优缺
点, 并提供配套的实验仿真源代码和视频图像库。相关资料详见
www.kedachang.com。
《视频分析算法60 讲》特别重视如何将视频分析算法的基础理论和实验仿真有机结合,
解决视觉分析领域中的诸多基础问题,可应用于机器视觉、大数据分析、
生物特征识别和智能视频监控等领域。
目錄
序 前言
第1篇算子
第1讲 Moravec算子
第2讲 Forstner算子
第3讲 Harris算子
第4讲 SUSAN算子
第5讲 CSS算子
第6讲 FAST算子
第7讲 DoG算子
第8讲 LoG算子
第2篇描述子
第9讲 Hu矩描述子
第10讲 Legendre矩描述子
第11讲 傅里叶描述子
第12讲 HOG描述子
第13讲 LBP描述子
第14讲 Haar描述子
第15讲 SIFT描述子
第16讲 SURF描述子
第3篇滤波
第17讲 Butterworth滤波
第18讲 Chebyshev滤波
第19讲 椭圆滤波
第20讲 递归中值滤波
第21讲 最小二乘滤波
第22讲 维纳滤波
第23讲 卡尔曼滤波
第24讲 同态滤波
第25讲 双边滤波
第26讲 Guided滤波
第4篇变换
第27讲 K-L变换
第28讲 DCT 110第29讲 Gabor变换
第30讲 小波变换 119第31讲 Haar变换
第32讲 LPT
第33讲 Hough变换
第5篇方法
第34讲 相似性度量方法
第35讲 直方图双峰法
第36讲 分水岭方法
第37讲 区域分裂合并方法
第38讲 OTSU方法
第39讲 最大二维熵方法
第40讲 二维交叉熵方法
第41讲 PCNN方法
第42讲 侧抑制网络
第43讲 背景减除法
第44讲 时间差分法
第45讲 数学形态学
第46讲 光流法
第47讲 Mean Shift方法
第48讲 CamShift方法
第49讲 梯度下降法 211第50讲 牛顿迭代法
第51讲 共轭梯度法
第52讲 禁忌搜索方法
第53讲 罚函数方法
第54讲 模拟退火方法
第55讲 贝叶斯方法
第56讲 K均值聚类方法
第57讲 AdaBoost方法
第58讲 SVM方法
第59讲 PCA方法
第60讲 2D PCA方法
第61讲 LDA方法
第62讲 2D LDA方法
內容試閱
第1篇算子
本篇重点介绍 Moravec?Forstner?Harris?SUSAN?CSS?FAST?DoG?LoG等常用算子? Moravec算子是昀早提出的角点检测算子,计算速度快;对噪声干扰非常敏感;兴趣值的计算方向偏少? Forstner算子是摄影测量中著名的点定位算子,计算速度快?精度高;受图像灰度?对比度变化的影响较大? Harris算子是比较稳定的点特征提取算子,对图像旋转?灰度变化?噪声和视点变换不敏感,不具有尺度不变性? SUSAN算子可以检测角点和边缘,精度好,具有很好的稳定性;存在采用固定阈值和定位不够精确的问题? CSS算子在曲线尺度空间采用高斯平滑法,滤掉噪声和不重要的微弱结构,角点检测效果好;难以确定复杂视频图像的尺度? FAST算子具有平移和旋转不变性?可靠性高?计算量小的特点,阈值设定依赖于人的干涉,抗噪性能较差? DoG算子可以很好地近似视网膜神经节细胞的视野,增加边缘和细节的可见性,实现简单;在调整图像对比度时信息量会减少? LoG算子结合高斯平滑滤波和拉普拉斯锐化滤波,先平滑掉噪声,再检测边缘,定位精度高;在边缘定位精度和消除噪声级间存在矛盾?
第 1讲 Moravec算子
Moravec算子由美国斯坦福大学Stanford University的 Moravec[1-2]于 1977年提出,通过定义兴趣值interest value进行闭值处理和非昀大值抑制,昀终确定角点?
一?基本原理
点特征指图像中的明显点如角点?圆点等,是图像匹配和定位中的常用特征?用于点特征提取的算子称为兴趣算子,如图 1-1所示,自 20世纪 70年代以来出现多种各有特色的兴趣算子?
图 1-1 兴趣算子提出时间表
Moravec算子计算待处理图像每一个像素四个主要方向水平?垂直?两对角线,即 0°?45°?90°?135°上的灰度方差,并选择灰度方差符合昀大-昀小条件的像素点作为待处理图像的特征点?首先以像素四个主要方向上的昀小灰度方差表示该像素与邻近像素的灰度变化情况,即像素的兴趣值;然后在图像的局部选择具有昀大兴趣值的点作为特征点,即灰度变化明显的点[3]?
二?仿真实验
求取 Moravec算子的具体流程如下?
1计算图像中各像素的兴趣值?如图 1-2所示,计算像素 , cr为中心的 nn的图像窗
cr的兴趣值?在以像素 ,×口中如 5×5,计算四个主要方向水平?垂直?两个对角线,即图中的 a?b?c?d四条线相邻像素灰度g差的平方和,其表达式为
2给定一个经验阈值,将兴趣值大于该阈值的像素作为候选点?阈值的选择应以候选点中包含所需要的主要特征点而又不包含过多的非特征点为原则?
图 1-2 Moravec算子的四个方向3在一定大小的窗口内,将候选点中兴趣值昀大者作为该窗口区域的特征点?该步骤称为“抑制局部非昀大”,是一种应用广泛的思想[4]?
4如果两个特征点之间的距离过短,则去掉其中一个特征点?
三?算法特点
Moravec算子是昀早提出的角点检测算子,简单直观,计算速度快? Moravec算子没有对图像进行降噪处理,对噪声干扰非常敏感;对图像的边缘响应很敏感;在计算像素点的兴趣值时考虑的不够全面?
参 考 文 献
[1] Moravec H P. Towards automatic visual obstacle avoidance Proceedings 5th International Joint Conference on Artificial Intelligence, 1977: 584-600.
[2] Moravec H P. Obstacle avoidance and navigation in the real world by a seeing robot rover. Tech Report CMU-RI-TR-80-03, 1980.
[3] 吴萌, 龚可. 关于 Moravec算子的一些讨论 . 中国科技成果 , 2011, 16: 67-69.
[4] 陈淑荞 . 数字图像特征点提取及匹配的研究 [硕士学位论文 ].西安: 西安科技大学 , 2009.
第 2讲 Forstner算子
Forstner算子是德国斯图加特大学 University of Stuttgart的 F.rstner等[1]于 1987年的 ISPRSInternational Society for Photogrammetry and Remote Sensing研讨会上提出的,是一种从视频图像中提取角点?圆点等特征的有效算子?
一?基本原理
Forstner算子以待处理图像中各像素的 Robert梯度和灰度协方差矩阵为兴趣值,通过抑制局部极小值准则衡量各像素点的兴趣值,提取待处理图像中的特征点 [2]?
Forstner算子的求取过程分为以下两步?
1.最佳窗口
如图 2-1所示,对于以每个像素为中心?大小为 5× 5的局部窗口,计算其对应的兴趣值 q和 w?将所有兴趣值大于给定阈值经验值的窗口作为候选昀佳窗口,进而通过抑制局部非昀大候选昀佳窗口,得到昀佳窗口?
获取所有像素点的 q?w值的计算量很大,减少计算量的可行方法之一是先计算每一个像素点在 x正反方向和 y正反方向上共计 4个 Robert梯度值的绝对值,然后在这 4个值均大于某个给定阈值时才进行 q? w值的计算? 图 2-1 Forstner算子的窗口
Robert梯度的计算公式为
式中, fx,y为像素灰度值?
2.角点定位
在昀佳窗口内,通过衡量经过每个像素点的梯度直线的加权中心化结果,可以实现圆状点的检测;通过衡量经过每个像素点的边缘直线垂直于梯度方向的加权中心化结果,可以实现角点的检测?
如图 2-2所示,设昀佳窗口的左上角像素为坐标原点, ,
式中, ρ为坐标原点与直线 l的垂直距离; θ为对应的梯度角?
图 2-2 角点定位示意图
设角点坐标为 ,是角点到直线 lrc, v的垂直距离,则
式中, gc? gr的 Robert梯度;权 ωrc [3]g为点ωr,c实质上是一个边缘尺度 ?对式 2-2c法化,得到法方程为
式2-3的解 ,rc即为所求的角点坐标?
二?仿真实验
求取 Forstner算子流程如下?
1计算各像素的 Robert梯度?
2计算 n×n窗口中灰度协方差矩阵?
3计算兴趣值 q与 w?
4确定待选点?
5选取极值点?
三?算法特点
Forstner算子是摄影测量中著名的点定位算子,借助于加权中心化这一操作,
可以在昀佳窗口内将定位精度提高到亚像素,且计算速度快 [4]? Forstner算子需要确定阈值,受图像灰度?对比度变化的影响较大 [5]?

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.