登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』数据挖掘:R语言实战

書城自編碼: 2404705
分類:簡體書→大陸圖書→計算機/網絡數據庫
作者: 黄文,王正林 编著
國際書號(ISBN): 9787121231223
出版社: 电子工业出版社
出版日期: 2014-06-01
版次: 1 印次: 1
頁數/字數: 292/471000
書度/開本: 16开 釘裝: 平装

售價:HK$ 145.6

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
小原流花道技法教程
《 小原流花道技法教程 》

售價:HK$ 109.8
少女映像室 唯美人像摄影从入门到实战
《 少女映像室 唯美人像摄影从入门到实战 》

售價:HK$ 110.9
詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究)
《 詹姆斯·伍德系列:不负责任的自我:论笑与小说(“美国图书评论奖”入围作品 当代重要文学批评家詹姆斯·伍德对“文学中的笑与喜剧”的精湛研究) 》

售價:HK$ 87.4
武当内家散手
《 武当内家散手 》

售價:HK$ 50.4
诛吕:“诸吕之乱”的真相与吕太后时期的权力结构
《 诛吕:“诸吕之乱”的真相与吕太后时期的权力结构 》

售價:HK$ 99.7
炙野(全2册)
《 炙野(全2册) 》

售價:HK$ 78.2
女人的胜利
《 女人的胜利 》

售價:HK$ 55.9
数据有道:数据分析+图论与网络+微课+Python编程(鸢尾花数学大系:从加减乘除到机器学习)
《 数据有道:数据分析+图论与网络+微课+Python编程(鸢尾花数学大系:从加减乘除到机器学习) 》

售價:HK$ 266.6

 

建議一齊購買:

+

HK$ 231.4
《R数据可视化手册》
+

HK$ 153.4
《数据分析:R语言实战》
+

HK$ 257.4
《R语言核心技术手册(第2版)》
+

HK$ 124.8
《基于R的统计分析与数据挖掘(统计数据分析与应用丛书)》
+

HK$ 127.4
《R语言与数据挖掘最佳实践和经典案例(介绍了R用于数据挖掘应用》
+

HK$ 127.7
《R数据分析——方法与案例详解(双色)》
內容簡介:
数据挖掘技术是当下大数据时代最关键的技术,其应用领域及前景不可估量。R是一款极其优秀的统计分析和数据挖掘软件,《数据挖掘:R语言实战》侧重使用R进行数据挖掘,重点讲述了R的数据挖掘流程、算法包的使用及相关工具的应用,同时结合大量精选的数据挖掘实例对R软件进行深入潜出和全面的介绍,以便读者能深刻理解R的精髓并能快速、高效和灵活地掌握使用R进行数据挖掘的技巧。
通过《数据挖掘:R语言实战》,读者不仅能掌握使用R及相关的算法包来快速解决实际问题的方法,而且能得到从实际问题分析入手,到利用R进行求解,以及对挖掘结果进行分析的全面训练。
《数据挖掘:R语言实战》适用于计算机、互联网、机器学习、信息、数学、经济金融、管理、运筹、统计以及有关理工科专业的本科生、研究生使用,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
目錄
 第0章 致敬,R! 
致敬,肩膀!
致敬,时代!
致敬,人才!
致敬,R瑟! 
 上篇 数据预处理
 第1章 数据挖掘导引
1.1 数据挖掘概述
 1.1.1 数据挖掘的过程
 1.1.2 数据挖掘的对象
 1.1.3 数据挖掘的方法
 1.1.4 数据挖掘的应用
1.2 数据挖掘的算法
1.3 数据挖掘的工具
 1.3.1 工具的分类
 1.3.2 工具的选择
 1.3.3 商用的工具
 1.3.4开源的工具
1.4 R在数据挖掘中的优势
 第2章 数据概览
2.1 n×m 数据集
2.2 数据的分类
 2.2.1 一般的数据分类
 2.2.2 R的数据分类
 2.2.3 用R简单处理数据
2.3 数据抽样及R实现
 2.3.1 简单随机抽样
 2.3.2 分层抽样
 2.3.3 整群抽样
2.4 训练集与测试集
2.5 本章汇总
 第3章 用R获取数据
3.1 获取内置数据集
 3.1.1 datasets 数据集
 3.1.2 包的数据集
3.2 获取其他格式的数据
 3.2.1 CSV 与TXT 格式
 3.2.2 从Excel 直接获取数据
 3.2.3 从其他统计软件中获取数据
3.3 获取数据库数据
3.4 获取网页数据
3.5 本章汇总
 第4章 探索性数据分析
4.1 数据集
4.2 数字化探索
 4.2.1 变量概况
 4.2.2 变量详情
 4.2.3 分布指标
 4.2.4 稀疏性
 4.2.5 缺失值
 4.2.6 相关性
4.3 可视化探索
 4.3.1 直方图
 4.3.2 累积分布图
 4.3.3 箱形图
 4.3.4 条形图
 4.3.5 点阵图
 4.3.6 饼图
4.5 本章汇总
 第5章 数据预处理
5.1 数据集加载
5.2 数据清理
 5.2.1 缺失值处理
 5.2.2 噪声数据处理
 5.2.3 数据不一致的处理
5.3 数据集成
5.4 数据变换
5.5 数据归约
5.6 本章汇总
 中篇 基本算法及应用
 第6章 关联分析
 6.1 概述
6.2 R中的实现
 6.2.1 相关软件包
 6.2.2 核心函数
 6.2.3 数据集
6.3 应用案例
 6.3.1 数据初探
 6.3.2 对生成规则进行强度控制
 6.3.3 一个实际应用
 6.3.4 改变输出结果形式
 6.3.5 关联规则的可视化
6.4 本章汇总
 第7章 聚类分析
7.1 概述
 7.1.1 K-均值聚类
 7.1.2 K-中心点聚类
 7.1.3 系谱聚类
 7.1.4 密度聚类
 7.1.5 期望最大化聚类
7.2 R中的实现
 7.2.1 相关软件包
 7.2.2 核心函数
 7.2.3 数据集
7.3 应用案例
 7.3.1 K-均值聚类
 7.3.2 K-中心点聚类
 7.3.3 系谱聚类
 7.3.4 密度聚类
 7.3.5 期望最大化聚类
7.4 本章汇总
 第8章 判别分析
8.1 概述
 8.1.1 费希尔判别
 8.1.2 贝叶斯判别
 8.1.3 距离判别
8.2 R中的实现
 8.2.1 相关软件包
 8.2.2 核心函数
 8.2.3 数据集
8.3 应用案例
 8.3.1 线性判别分析
 8.3.2 朴素贝叶斯分类
 8.3.3 K 最近邻
 8.3.4 有权重的K 最近邻算法
8.4 推荐系统综合实例
 8.4.1 kNN 与推荐
 8.4.2 MovieLens 数据集说明
 8.4.3 综合运用
8.5 本章汇总
 第9章 决策树
9.1 概述
 9.1.1 树形结构
 9.1.2 树的构建
 9.1.3 常用算法
9.2 R中的实现
 9.2.1 相关软件包
 9.2.2 核心函数
 9.2.3 数据集
9.3 应用案例
 9.3.1 CART 应用
 9.3.2 C4.5 应用
9.4 本章汇总
 下篇 高级算法及应用
 第10章 集成学习
10.1 概述
 10.1.1 一个概率论小计算
 10.1.2 Bagging 算法
 10.1.3 AdaBoost 算法
10.2R中的实现
 10.2.1 相关软件包
 10.2.2 核心函数
 10.2.3 数据集
10.3 应用案例
 10.3.1 Bagging 算法
 10.3.2 Adaboost 算法
10.4 本章汇总
 第11章 随机森林
11.1 概述
 11.1.1 基本原理
 11.1.2 重要参数
 11.2 R中的实现
 11.2.1 相关软件包
 11.2.2 核心函数
 11.2.3 可视化分析
11.3 应用案例
 11.3.1 数据处理
 11.3.2 建立模型
 11.3.3 结果分析
 11.3.4 自变量的重要程度
 11.3.5 优化建模
11.4 本章汇总
 第12章 支持向量机
12.1 概述
 12.1.1 结构风险最小原理
 12.1.2 函数间隔与几何间隔
 12.1.3 核函数
12.2 R中的实现
 12.2.1 相关软件包
 12.2.2 核心函数
 12.2.3 数据集
12.3 应用案例
 12.3.1 数据初探
 12.3.2 建立模型
 12.3.3 结果分析
 12.3.4 预测判别
 12.3.5 综合建模
 12.3.6 可视化分析
 12.3.7 优化建模
12.4 本章汇总
 第13章 神经网络
13.1 概述
 13.2 R中的实现
 13.2.1 相关软件包
 13.2.2 核心函数
13.3 应用案例
 13.3.1 数据初探
 13.3.2 数据处理
 13.3.3 建立模型
 13.3.4 结果分析
 13.3.5 预测判别
 13.3.6 模型差异分析
 13.3.7 优化建模
13.4 本章汇总
 第14章 模型评估与选择
14.1 评估过程概述
14.2 安装Rattle包
14.3 Rattle 功能简介
 14.3.1 Data——选取数据
 14.3.2 Explore——数据探究
 14.3.3 Test——数据相关检验
 14.3.4 Transform——数据预处理
 14.3.5 Cluster——数据聚类
 14.3.6 Model——模型评估
 14.3.7 Evaluate——模型评估.
 14.3.8 Log——模型评估记录
14.4 模型评估相关概念
 14.4.1 误判率.
 14.4.2 正确错误的肯定判断、正确错误的否定判断.
 14.4.3 精确度、敏感度及特异性
14.5 Rattle 在模型评估中的应用
 14.5.1 混淆矩阵
 14.5.2 风险图
 14.5.3 ROC 图及相关图表
 14.5.4 模型得分数据集
14.6 综合实例
 14.6.1 数据介绍
 14.6.2 模型建立
 14.6.3 模型结果分析

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.