新書推薦:
《
逃不开的科技创新战争
》
售價:HK$
103.3
《
漫画三国一百年
》
售價:HK$
55.2
《
希腊文明3000年(古希腊的科学精神,成就了现代科学之源)
》
售價:HK$
82.8
《
粤行丛录(岭南史料笔记丛刊)
》
售價:HK$
80.2
《
岁月待人归:徐悲鸿自述人生艺术
》
售價:HK$
59.8
《
女人的中国医疗史:汉唐之间的健康照顾与性别
》
售價:HK$
103.8
《
资治通鉴熊逸版:第四辑
》
售價:HK$
458.9
《
中国近现代名家精品——项维仁:工笔侍女作品精选
》
售價:HK$
66.1
|
內容簡介: |
阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
|
目錄:
|
Preface
1 Mathematical Preliminaries
1.1 InfiniteSeries
1.2 Series ofFunctions
1.3 Binomial Theorem
1.4 Mathematical Induction
1.5 Operations on Series Expansions of Functions
1.6 Some Important Series
1.7 Vectors
1.8 Complex Numbers and Functions
1.9 Derivatives andExtrema
1.10 Evaluation oflntegrals
1.1 I Dirac Delta Function
AdditionaIReadings
2 Determinants and Matrices
2.1 Determinants
2.2 Matrices
AdditionaI Readings
3 Vector Analysis
3.1 Review ofBasic Properties
3.2 Vectors in 3-D Space
3.3 Coordinate Transformations
3.4 Rotations in IR3
3.5 Differential Vector Operators
3.6 Differential Vector Operators: Further Properties
3.7 Vectorlntegration
3.8 Integral Theorems
3.9 PotentiaITheory
3.10 Curvilinear Coordinates
AdditionaIReadings
4 Tensors and Differential Forms
4.1 TensorAnalysis
4.2 Pseudotensors, Dual Tensors
4.3 Tensors in General Coordinates
4.4 Jacobians
4.5 DifferentialForms
4.6 DifferentiatingForms
4.7 IntegratingForms
AdditionalReadings
5 Vector Spaces
5.1 Vectors in Function Spaces
5.2 Gram-Schmidt Orthogonalization
5.3 Operators
5.4 SelfAdjointOperators
5.5 Unitaty Operators
5.6 Transformations of Operators
5.7 Invariants
5.8 Summary-Vector Space Notation
AdditionaIReadings
6 Eigenvalue Problems
6.1 EigenvalueEquations
6.2 Matrix Eigenvalue Problems
6.3 Hermitian Eigenvalue Problems
6.4 Hermitian Matrix Diagonalization
6.5 NormaIMatrices
AdditionalReadings
7 Ordinary DifTerential Equations
7.1 Introduction
7.2 First-OrderEquations
7.3 ODEs with Constant Coefficients
7.4 Second-Order Linear ODEs
7.5 Series Solutions-Frobenius '' Method
7.6 OtherSolutions
7.7 Inhomogeneous Linear ODEs
7.8 Nonlinear Differential Equations
Additional Readings
8 Sturm-Liouville Theory
8.1 Introduction
8.2 Hermitian Operators
8.3 ODE Eigenvalue Problems
8.4 Variation Method
8.5 Summary, Eigenvalue Problems
Additional Readings
9 Partial Differential Equations
9.1 Introduction
9.2 First-Order Equations
9.3 Second-Order Equations
9.4 Separation of Variables
9.5 Laplace and Poisson Equations
9.6 Wave Equation
9.7 Heat-Flow, or Diffusion PDE
9.8 Summary
Additional Readings
10 Green''s Functions
10.1 One-Dimensional Problems
10.2 Problems in Two and Three Dimensions
Additional Readings
11 Complex Variable Theory
11.1 Complex Variables and Functions
11.2 Cauchy-Riemann Conditions
11.3 Cauchy'' s Integral Theorem
11.4 Cauchy'' s Integral Formula
11.5 Laurent Expansion
11.6 Singularities
11.7 Calculus of Residues
11.8 Evaluation of Definite Integrals
11.9 Evaluation of Sums
11.10 Miscellaneous Topics
Additional Readings
12 Further Topics in Analysis
12.1 Orthogonal Polynomials
12.2 Bernoulli Numbers
12.3 Euler-Maclaurin Integration Formula
12.4 Dirichlet Series
12.5 Infinite Products
12.6 Asymptotic Series
12.7 Method of Steepest Descents
12.8 Dispersion Relations
Additional Readings
13 Gamma Function
13.1 Definitions, Properties
13.2 Digamma and Polygamma Functions
13.3 The Beta Function
13.4 Stirling''s Series
13.5 Riemann Zeta Function
13.6 Other Related Functions
Additional Readings
14 Bessel Functions
14.1 Bessel Functions of the First Kind, ,Iv x
14.2 Orthogonality
14.3 Neumann Functions, Bessel Functions of the Second Kind
14.4 Hankel Functions
14.5 Modified Bessel Functions, Iv x and Kv x
14.6 Asymptotic Expansions
14.7 Spherical Bessel Functions
Additional Readings
15 Legendre Functions
15.1 Legendre Polynomials
15.2 Orthogonality
15.3 Physical Interpretation of Generating Function
15.4 Associated Legendre Equation
15.5 Spherical Harmonics
15.6 Legendre Functions of the Second Kind
Additional Readings
16 Angular Momentum
16.1 Angular Momentum Operators
16.2 Angular Momentum Coupling
16.3 Spherical Tensors
16.4 Vector Spherical Harmonics
Additional Readings
17 Group Theory
17.1 Introduction to Group Theory
17.2 Representation of Groups
17.3 Symmetry and Physics
17.4 Discrete Groups
17.5 Direct Products
17.6 Symmetric Group
17.7 Continuous Groups
17.8 Lorentz Group
17.9 Lorentz Covariance of Maxwell''s Equations
17.10 Space Groups
Additional Readings
18 More Special Functions
18.1 Hermite Functions
18.2 Applications of Hermite Functions
18.3 Laguerre Functions
18.4 Chebyshev Polynomials
18.5 Hypergeometric Functions
18.6 Confluent Hypergeometric Functions
18.7 Dilogarithm
18.8 Elliptic Integrals
Additional Readings
19 Fourier Series
19.1 General Properties
19.2 Applications of Fourier Series
19.3 Gibbs Phenomenon
Additional Readings
20 Integral Transforms
20.1 Introduction
20.2 Fourier Transform
20.3 Properties of Fourier Transforms
20.4 Fourier Convolution Theorem
20.5 Signal-Processing Applications
20.6 Discrete Fourier Transform
20.7 Laplace Transforms
20.8 Properties of Laplace Transforms
20.9 Laplace Convolution Theorem
20.10 Inverse Laplace Transform
Additional Readings
21 Integral Equations
21.1 Introduction
21.2 Some Special Methods
21.3 Neumann Series
21.4 Hilbert-Schmidt Theory
Additional Readings
17.4 Discrete Groups
17.5 Direct Products
17.6 Symmetric Group
17.7 Continuous Groups
17.8 Lorentz Group
17.9 Lorentz Covariance of Maxwell''s Equations
17.10 Space Groups
Additional Readings
18 More Special Functions
18.1 Hermite Functions
18.2 Applications of Hermite Functions
18.3 Laguerre Functions
18.4 Chebyshev Polynomials
18.5 Hypergeometric Functions
18.6 Confluent Hypergeometric Functions
18.7 Dilogarithm
18.8 Elliptic Integrals
Additional Readings
19 Fourier Series
19.1 General Properties
19.2 Applications of Fourier Series
19.3 Gibbs Phenomenon
Additional Readings
20 Integral Transforms
20.1 Introduction
20.2 Fourier Transform
20.3 Properties of Fourier Transforms
20.4 Fourier Convolution Theorem
20.5 Signal-Processing Applications
20.6 Discrete Fourier Transform
20.7 Laplace Transforms
20.8 Properties of Laplace Transforms
20.9 Laplace Convolution Theorem
20.10 Inverse Laplace Transform
Additional Readings
21 Integral Equations
21.1 Introduction
21.2 Some Special Methods
21.3 Neumann Series
21.4 Hilbert-Schmidt Theory
Additional Readings
22 Calculus of Variations
22.1 Euler Equation
22.2 More General Variations
22.3 Constrained MinimaMaxima
22.4 Variation with Constraints
Additional Readings
23 Probability and Statistics
23.1 Probability: Definitions, Simple Properties
23.2 Random Variables
23.3 Binomial Distribution
23.4 Poisson Distribution
23.5 Gauss'' Normal Distribution
23.6 Transformations of Random Variables
23.7 Statistics
Additional Readings
Index
|
|