Preface
Preface to the First Edition
Abbreviations and Symbols
1. Preliminaries
1.1 Notations And Conventions
1.2 Measurability, Lp Spaces And Monotone Class Theorems
1.3 Functions of Bounded Variation And Stieltjes Integrals
1.4 Probability Space, Random Variables, Filtration
1.5 Convergence, Conditioning
1.6 Stochastic Processes
1.7 Optional Times
1.8 Two Canonical Processes
1.9 Martingales
1.10 Local Martingales
1.11 Exercises
2. Definition of The Stochastic Integral
2.1 Introduction
2.2 Predictable Sets And Processes
2.3 Stochastic Intervals
2.4 Measure on The Predictable Sets
2.5 Definition of The Stochastic Integral
2.6 Extension To Local Integrators And Integrands
2.7 Substitution Formula
2.8 A Sufficient Condition for Extendability of Hz
2.9 Exercises
3. Extension of The Predictable Integrands
3.1 Introduction
3.2 Relationship Between P, O, And Adapted Processes
3.3 Extension of The Integrands
3.4 A Historical Note
3.5 Exercises
4. Quadratic Variation Process
4.1 Introduction
4.2 Definition And Characterization of Quadratic Variation
4.3 Properties of Quadratic Variation For An L2-Wartingale
4.4 Direct Definition of ΜM
4.5 Decomposition of (M)2
4.6 A Limit Theorem
4.7 Exercises
5. The Ito Formula
5.1 Introduction
5.2 One-Dimensional It5 Formula
5.3 Mutual Variation Process
5.4 Multi-Dimensional It5 Formula
5.5 Exercises
……
6. Applications of The Ito Formula
7. Local Time and Tanaka''s Formula
8. Reflected Brownian Motions
9. Generalized Fro Formula,Change of Time and Measure
10. Stochastic Differential Equations