新書推薦:
《
医用化学(第三版)
》
售價:HK$
57.3
《
别怕,试一试
》
售價:HK$
67.9
《
人才基因(凝聚30年人才培育经验与智慧)
》
售價:HK$
103.4
《
深度学习详解
》
售價:HK$
114.8
《
李白传(20世纪文史学家李长之经典传记)
》
售價:HK$
45.8
《
津轻:日本无赖派文学代表太宰治自传性随笔集
》
售價:HK$
66.7
《
河流之齿
》
售價:HK$
59.8
《
新经济史革命:计量学派与新制度学派
》
售價:HK$
89.7
|
編輯推薦: |
《高能量密度物理:基础、惯性约束聚变和实验天体物理学》是springer出版社出版的国际“冲击波与高压现象”丛书之一,是目前仅有的较全面论述高能量密度物理基础和应用的专著,是美国密执安大学大气海洋和空间科学系教授RP.Drake在其多年研究生教材的基础上撰写而成的。Drake教授于1979年在JohnHop—kins大学取得博士学位,长期参加利弗莫尔国家实验室(LLNL)聚变研究计划,擅长激光与等离子体相互作用,1989年—1996年任该实验室等离子体研究所所长。其问,1989年-1993年任加州大学Davis分校教授,1996年到密执安大学任教后专门从事实验室天体物理的研究。
|
內容簡介: |
《高能量密度物理:基础、惯性约束聚变和实验天体物理学》第1章~第7章属于流体动力学和辐射流体力学基础,然而阐述角度独特,内容与一般教材不同,使从流体力学或者从等离子体物理进入高能量密度物理研究的读者都会受益匪浅。第8章介绍利用高功率激光设施和z箍缩内爆装置得到高能量密度稠密等离子体的原理和技术,叙述简明扼要。最后三章分别论述以高能量密度物理作为基础的三个主要研究领域或学科,即惯性约束聚变、实验室天体物理和激光强场物理(相对论高能量密度系统),想要更好掌握这些知识的读者还应进一步学习有关的专著。
|
目錄:
|
第1章高能量密度物理导论
1.1若干历史注记
1.2高能量密度物理的各种状态
1.3惯性约束聚变简述
1.4实验天体物理学简述
1.5与以前有关著作的联系
1.6变量和符号
第2章流体与等离子体的描述
2.1多方气体的欧拉方程组
2.2麦克斯韦方程组
2.3更加普遍和完全的单流体运动方程组
2.3.1一般的单流体运动方程组
2.3.2磁流体力学
2.3.3三温单流体模型
2.3.4计算机数值模拟方法
2.4等离子体理论
2.4.1传统等离子体理论的有效性状况
2.4.2双流体运动方程组
2.4.3动理学的描述
2.5单个粒子的运动
第3章高能量密度等离子体的性质
3.1简单物态方程
3.1.1多方气体
3.1.2辐射主导的等离子体
3.1.3费米简并的物态方程
3.2电离等离子体
3.2.1根据萨哈方程的电离平衡
3.2.2连续能区下降和离子球模型
3.2.3库仑相互作用
3.3电离等离子体的热力学
3.3.1广义多方指数
3.3.2压力、能量及相关结论
3.3.3物态方程的概貌
3.4计算使用的物态方程
3.4.1托马斯-费米模型和QEOS
3.4.2表格式物态方程
3.5实验室和天体物理学使用的物态方程
3.5.1物态方程的天体物理学背景
3.5.2实验室物态方程及其在天体物理学中的应用
3.6测量物态方程的实验
3.6.1平面飞片直接撞击
3.6.2阻抗匹配
3.6.3其他方法
第4章冲击与稀疏
4.1冲击波
4.1.1冲击间断跳跃条件
4.1.2冲击绝热线和物态方程
4.1.3一些有用的冲击波关系式
4.1.4经过冲击波后熵的变化
4.1.5斜冲击波
4.1.6冲击波与界面的相互作用和平面飞片撞击
4.2稀疏波
4.2.1平面一维等温稀疏过程和自相似分析
4.2.2黎曼不变量
4.2.3平面一维绝热稀疏过程
4.3爆炸波
4.3.1爆炸波中的能量守恒
4.3.2自相似运动的一般讨论
4.3.3谢多夫-泰勒球面爆炸波
4.4流体动力学界面现象
4.4.1冲击波在界面处的行为及其影响
4.4.2追赶冲击波
4.4.3稀疏过程中产生的二次冲击波
4.4.4爆炸波在界面处的行为
4.4.5稀疏波在界面处的行为
4.4.6斜冲击波在界面处的行为
第5章流体动力学不稳定性
5.1瑞利-泰勒不稳定性简述
5.1.1浮力的驱动作用
5.1.2流体动力学描述的基础
5.2瑞利一泰勒不稳定性线性理论的应用
5.2.1两个均匀流体之间界面的瑞利-泰勒不稳定性
5.2.2黏性对瑞利-泰勒不稳定性的影响
5.2.3具有密度梯度系统的瑞利-泰勒不稳定性和全局模式
5.3对流不稳定性或熵模式
5.4瑞利-泰勒不稳定性非线性阶段的浮力-阻力模型
5.5模式耦合
5.6开尔文-亥姆霍兹不稳定性
5.6.1开尔文-亥姆霍兹不稳定性的基本方程组
5.6.2具有陡峭变化边界的均匀流体系统
5.6.3具有扩展的速度剪切层、其余区域均匀的流体系统
5.6.4存在过渡区的均匀流体系统
5.7冲击波稳定性和里希特迈耶一缅希柯夫不稳定性
5.7.1冲击波稳定性
5.7.2冲击波与波纹形界面的相互作用
5.7.3冲击波经过后界面的演化--里希特迈耶-缅希柯夫不稳定性
5.8流体动力学湍流
第6章辐射输运
6.1基本概念
6.1.1辐射的性质与描述
6.1.2热辐射
6.1.3辐射与物质相互作用的类型
6.1.4辐射与物质净相互作用的描述
6.2辐射输运
6.2.1辐射输运方程
6.2.2辐射输运计算
6.2.3天体物理学和实验室研究中使用的不透明度
6.2.4平衡扩散极限下的辐射输运
6.2.5非平衡扩散和双温模型
6.3相对论辐射输运的考察
第7章辐射流体力学
7.1辐射流体力学方程组
7.1.1基本方程组
7.1.2热力学关系
7.2辐射和涨落
7.2.1辐射声波,光学厚情形
7.2.2输运较为重要情形中冷却的作用
7.2.3光学薄的声波
7.2.4辐射热不稳定性
7.3辐射扩散和马夏克波
7.3.1马夏克波
7.3.2电离辐射波
7.3.3常能量的辐射扩散波
7.4辐射冲击波
7.4.1辐射冲击波的各种状况
7.4.2辐射冲击波的流体动力学
7.4.3辐射前驱波的模型
7.4.4光学薄介质中的辐射冲击波
7.4.5下游光学厚、上游光学薄介质中的辐射冲击波
7.4.6光学厚介质中辐射冲击波的流体动力学
7.4.7光学厚介质中的辐射冲击波,通量主导状况
7.4.8光学厚介质中的辐射冲击波,辐射主导状况
7.4.9冲击波中电子与离子的耦合
7.5电离阵面
第8章创建物质的高能量密度状况
8.1激光束直接辐照
8.1.1激光技术
8.1.2激光束聚焦
8.1.3电磁波的传播与吸收
8.1.4激光散射和激光-等离子体不稳定性
8.1.5电子热输运
8.1.6烧蚀压力
8.2黑腔
8.2.1激光束转换为X射线
8.2.2离子束产生X射线
8.2.3x射线引起的烧蚀
8.2.4与黑腔有关的其他问题
8.3z箍缩与相关的实验方法
8.3.1应用于高能量密度物理研究的z箍缩技术
8.3.2动力黑腔
8.3.3磁驱动高速平面飞片
第9章惯性约束聚变
9.1发生聚变的燃料终态条件
9.1.1聚变反应所需燃料及其终态状况
9.1.2能量增益:是否值得去做
9.1.3压缩状态下氘氚燃料的性质
9.2燃料终态的形成和聚变点火
9.2.1高度压缩状态的实现
9.2.2聚变燃料点火
9.2.3中心热点点火
9.2.4快点火
9.3困境和问题
9.3.1瑞利-泰勒不稳定性
9.3.2对称性
9.3.3激光-等离子体不稳定性
第10章实验天体物理学
10.1流体动力学系统的标度关系
10.2一个透彻的例子:Ⅱ型超新星中的流体动力学界面不稳定性
10.2.1关于Ⅱ型超新星的天体物理学基本知识
10.2.2超新星中界面不稳定性的标度参数问题
10.2.3Ⅱ型超新星中界面不稳定性的模拟实验
10.3另一个例子:星际云团破碎中的相互作用
10.4辐射流体力学系统的标度关系
10.5辐射天体物理喷流:研究背景和标度关系
10.5.1天体物理喷流的基本知识
10.5.2从辐射天体物理喷流至实验室系统的标度关系
10.5.3辐射喷流的实验
第11章相对论高能量密度系统
11.1超快激光器的发展
11.2强电磁场中单电子的运动
11.3激光与等离子体相对论相互作用的引发
11.4吸收机制
11.5谐波的产生
11.6相对论自聚焦和诱导透明性
11.7粒子的加速
11.7.1等离子体内的加速
11.7.2利用固体靶表面的电场势进行加速
11.7.3利用库仑爆炸进行加速
11.8钻孔现象和无碰撞冲击波
11.9其他现象
附录A物理常数,缩写词,变量符号
附录B简单的Mathematica计算编码
参考文献
|
內容試閱:
|
另一种过程中处于连续谱状态的电子与离子复合,发出一个光子。这样产生的X射线谱线位于K边沿附近,因为对于处于接近零能量的连续谱状态的电子来说,这是一个非常强烈的过程。在能量低于此谱线的部分,可以观察到由于与光子复合进入激发态,然后又衰退到基态的电子所造成的结构。在高于这条谱线的能谱范围则可看到连续谱的特色,即从连续谱中能量较高状态进行自由—束缚跃迁的电子所造成的结构。这种自由—束缚跃迁辐射谱段的能量略高于上述X射线谱线,某些情形中可用来对温度进行诊断。
3.第三种类型的辐射与物质相互作用
最后一种类型涉及自由—自由跃迁,这种跃迁把一个电子从一个连续谱状态转移到另一个连续谱状态。自由电子与其他任何粒子(包括光子)相互作用,产生自由—自由跃迁,而且这种跃迁常导致光子的发射或吸收。两种最普通而且最重要的自由—自由相互作用过程是辐射的轫致发射和逆轫致吸收。轫致发射中,一个粒子(特别是电子)通过与另一个带电粒子(特别是原子核)的相互作用得到加速,导致光子的发射。轫致发射是灼热稠密物质发射连续谱辐射的主要机制。逆轫致吸收中,光子(或光波)驱使—个电子运动经过一个原子核,与原子核的相互作用使得电子运动发生随机化,其作用是从光波中提取能量。逆轫致过程的吸收系数将在9.2节中论述。逆轫致过程的高能端极限是康普顿散射,这里光子与粒子的能量交换是量子化的。对于磁化等离子体有重要意义的另一种自由—自由发射机制,是同步辐射的发射。
6.1.4辐射与物质净相互作用的描述
幸运的是,人们并不经常需要明确地考虑每一种独特的辐射与物质相互作用,而只需要考虑辐射被发射、吸收和散射的净总量,给出对许多系统的恰当描述就行。下面给出这样一种描述。
等离子体通过直接和问接两种途径发射辐射,直接途径即是通过粒子之问的相互作用,如轫致辐射;间接途径即由辐射在角度或能量方面的散射所引起。写出谱发射率为其cgs制单位为exgcm3·s·sr·Hz)。在一些技术著作中,使用的术语是“谱发射系数”而不是“谱发射率”。上式中记vth为谱热发射率,这里已做近似,即假定粒子能量具有一个单一的麦克斯韦分布。更普遍完备的表达式应当明确包括系统中全部粒子发射辐射的所有可能过程,例如,应包括碰撞激发产生的线谱发射以及电子分布的高能尾部引起的轫致辐射发射。我们指出,vth在频域及立体角上的积分,给出了等离子体中由于辐射导致的物质的功率损失率。式(6.2,1)右部另一项是谱散射发射率vth,包括了使辐射在角度或能量方面发生散射的所有过程。我们对此项不进行深入讨论,但是指出,给定角度或能量下的谱散射发射率,通常与其他角度或能量范围上辐射强度的一个积分有关。与本节前面讨论的物理量不相同,式(6.21)在频域或角度范围上的积分不能简捷地进行,除非先对散射项做简化沂似,或者依据某种理由将其忽略不计。
……
|
|