第1章 概论
1.1 铝的优点和缺点
铝及铝合金是仅次于钢铁材料、 运用面广泛的金属结构材料。与钢铁材料相比, 铝的主要优点是质轻和耐腐蚀等。虽然铝不是“永不生锈”的,
但是在通常大气环境中其耐腐蚀性或耐候性比钢铁的确实好得多。由于铝是一个钝化型金属, 表面总是存在一层附着性好的钝态氧化膜,
从而保护了金属铝不容易被腐蚀。换句话说, 表面没有氧化膜的裸露金属铝,
腐蚀是非常容易发生的。此外铝的密度只有钢铁的13左右。铝及铝合金作为工程材料还有许多明显的优点,
比如传热性和导电性好、冲击吸收性和光反射性强等。铝及铝合金还有极好的加工成形性与可焊性, 因此可以方便地加工成各种形状和尺寸的管材、
板材、 箔材、棒材和型材等, 已广泛运用于许多工业领域与民用领域[1]。
一切事物总是具有两面性的, 遗憾的是铝材的缺点也很明显。铝材的主要缺点是硬度低、 耐磨性比较差,
在某些介质条件中耐腐蚀性还不尽如人意等。铝的电极电位很负, 因此与其他金属接触时,
铝通常作为阳极容易发生严重的电偶腐蚀现象等。另外铝的线膨胀系数大, 弹性模量只有钢的13等。上述的大部分缺点都涉及到表面性能方面,
如硬度和耐磨性等, 但是通过表面处理可以得到改善或解决, 这就是铝材必须强调表面处理的原因,
只有通过表面处理才可能进一步扩大铝的应用范围和延长使用时间。
为了扩大铝的应用范围, 尤其作为装饰材料使用时, 需要高光亮度表面或特殊纹理的表面, 因此机械抛光和扫纹、
化学抛光、电化学抛光等表面处理是必不可少的。有机聚合物的表面涂饰在增加铝材表面颜色多样化, 延长在苛刻恶劣环境下服役期限等方面,
目前已经得到愈来愈广泛的运用。例如铝材建筑门窗的粉末静电喷涂和电泳涂漆处理, 由于其性能与外观的优势,
已经超过单一阳极氧化处理成为目前占优势的表面处理技术。
通过特殊的表面处理技术, 赋予铝合金零件的功能性表面是铝材表面处理的新动向,
从而大大拓展了铝材的应用领域。例如铝合金活塞通过微弧氧化处理, 表面硬度提高5~8倍, 耐磨性得到明显提高,
从而大大提升使用寿命。利用铝阳极氧化膜的多孔型结构特征, 掺入功能性物质得到铝的功能型阳极氧化膜,
是具有广阔前景铝材表面处理新思路[2]。
铝材的表面处理不仅可以改善与提高化学性能、 耐腐蚀性、 耐磨损性等, 从而延长使用寿命,
也可以获得靓丽的多彩多色的外观、拓宽与提升装饰性能, 而且可以赋予新的物理性能,
得到各种各样新型的功能材料和器件。因此铝的表面处理作为一项技术措施, 已经不仅仅是锦上添花之举,
而且是铝合金从原材料引向各式各样实际应用的零件、 部件、 器件不可缺少的环节。
1.2 铝的物理性质
铝的物理性质列于表1-1, 从表中数据可以看出铝的特点、 优点及缺点。
表1-1 铝的物理性质[1]
由于铝合金的品种极多, 许多铝合金就是从提高力学性能为目的而研发的, 鉴于本书介绍铝材的表面处理,
表1-1没有列入各种铝合金力学性能的数据。读者如需要有关铝合金的物理和力学性能数据,
可以从有关专著或本读物丛书的其他相关著作中查阅。
1.3 铝的化学性质和表面钝性
1.3.1 铝的热力学稳定性
从金属热力学稳定性分析, 如表1-2所示的金属电位序, 金属铝确实是一个非常活泼的金属,
在结构金属中铝仅次于镁和铍。但是热力学分析只能提供腐蚀的可能性, 并不能了解金属铝的实际腐蚀进程与腐蚀形式,
这是属于腐蚀动力学的技术范畴, 而腐蚀动力学问题恰恰又是工程技术人员最最关心问题。
表1-2 金属的电位序[1]
尽管从热力学考虑铝是非常活泼的金属, 但实际上铝及铝合金具有比较好的耐腐蚀性能, 在中性大气、
天然水、某些化学品以及大部分食品中可以满意地使用许多年。这完全是由于铝表面形成的自然氧化膜的钝性所决定的,
也就是说铝的耐腐蚀性能实际上取决于表面形成的铝的氧化物状态和本性。这种表面氧化膜如果人为地强化生成,
例如通过阳极氧化处理得到阳极氧化膜, 其表面钝性比自然氧化膜更强, 因此耐腐蚀性也比自然氧化膜更加优良。当然, 在使用过程中,
需要考虑表面氧化膜破损的可能性, 尤其在铝与其他金属电偶接触时, 不能只考虑氧化膜的钝性, 还应该考虑氧化膜破裂后金属的活性,
这样才不致于发生意外事故。特别是自然氧化膜的钝态保持是相当有限的, 因此利用金属的电位序, 从热力学观点出发考虑实际腐蚀的可能性,
仍然不能认为是完全没有意义的, 也就是说表1-2中金属电位序中铝的活性位置, 对于腐蚀可能性的判断仍然可以有警示作用。
1.3.2 铝及铝合金的氧化膜
铝在室温大气中形成的自然氧化膜的厚度很薄, 一般只有5 nm50 以下的厚度级别, 但是铝的自然氧化膜一旦被破坏立即会自行修复,
这就赋予铝以很好的耐腐蚀性。铝氧化膜的分子体积, 在化学计量上是金属铝的1.5倍技术术语称Pilling ratio=1.5,
也就是铝表面氧化膜本身始终处于压应力状态, 因此具有保护性氧化膜的技术前提, 这是非常重要的技术特点。假如这个比率小于1,
表面氧化膜不可能全部覆盖金属表面, 因此这个氧化膜不具备保护性的前提。随着环境温度的升高, 或者由于环境湿度的增加,
自然氧化膜的厚度也会随之增加。表1-3表示不同条件下的各种氧化膜的厚度范围, 其中包括化学氧化膜及阳极氧化膜。不言而喻,
保护性氧化膜的厚度愈厚, 则金属铝的耐环境腐蚀性越强, 也就是具有更长的使用寿命。铝合金的氧化膜可能不是单一膜,
例如铝镁合金的含镁量超过4%时, 表面氧化膜可能为外层以氧化镁为主而内层以氧化铝为主的双层膜。
表1-3 铝在不同条件下生成的氧化膜的厚度[1]
铝表面自然氧化膜的形成可以看成两个相反的作用过程, 即形成氧化膜的作用与溶解氧化膜的作用之间的动力学平衡的结果。笼统地说,
如果溶解作用不存在, 譬如在非常干燥的空气中, 则自然氧化膜可能只由阻挡层组成, 并且很快就达到其极限厚度。假如环境的溶解作用太强,
则氧化膜的水解腐蚀过程大于形成过程, 此时阻挡层非常薄而外层氧化膜比较厚。实际情况总是处在上述两种极端情况之间,
随着两种相反作用达到的平衡。所以自然氧化膜的厚度, 视铝合金成分和环境条件的不同, 一般可能处在20~200 nm,
如果温度升高则自然氧化膜随之增厚。化学转化膜是在强氧化性介质中形成的, 虽然比自然氧化膜厚一些, 但是比阳极氧化膜薄得多,
因此化学转化膜的耐腐蚀性也不如阳极氧化膜的。阳极氧化膜的厚度通常是保护作用的前提, 膜厚是与阳极氧化时通过的电量成正比的,
在恒电流阳极氧化时可以认为膜厚是与阳极氧化时间成正比的。
铝在常温下生成的氧化膜结构虽然不完全相同, 但基本上可以认为是非晶态的化合物, 而高温生成的氧化膜可能是晶态的氧化铝,
例如450℃以上生成γ-Al2O3, 而熔融状态生成高温相α-Al2O3, 不同结构氧化膜的耐腐蚀性是不相同的,
α-Al2O3具有更好的耐腐蚀性能和更高的耐磨性。本书第2章详细介绍保护型阳极氧化膜的结构, 由阻挡层和多孔层组成, 阻挡层很薄,
其厚度取决于外加电压, 而多孔层厚度与电流密度与时间有关。在大气中生成的自然氧化膜一般也是由两层组成,
内层氧化膜是靠近金属的极薄的非晶态的紧密层阻挡层, 其极限厚度只取决于环境温度,
而与环境成分空气、氧气或湿空气没有关系。而外层膜的厚度一般比内层膜的厚度厚得多, 是由更具渗透性的羟基氧化物组成,
羟基氧化物是由氧化物水解产生的, 因此外层氧化膜的厚度与环境成分有关系。图1-1表示铝的自然氧化膜的断面示意图。
图1-1 铝的自然氧化膜的断面示意图[1]
铝的氧化膜由于机械损伤或化学溶解发生的破坏, 在大部分情形下可以立即自行修复, 其修复能力的大小取决于环境湿度,
这种自修复能力称为氧化膜的“自愈性”。氧化膜中原先存在的缺陷,
可能就是氧化膜择优破坏的成核位置。铝合金在溶液中发生破坏同时又可以再钝化“修复”, 但是卤素离子如氯离子妨碍再钝化过程,
使得缺陷成为氧化膜破坏的成核中心位置,
因此氧化膜的局部缺陷破坏就可能是铝表面腐蚀的开始。由于铝的耐腐蚀性取决于表面氧化膜的完整性和保护性,
因此氧化膜在环境中的稳定性自然成为首先关心的问题。
铝的氧化膜存在不同的氧化物结构, 其中拜耳体bayerite和勃姆体boehmite是最常见的两种形式。在比较低的环境温度下,
生成的氧化物多数是拜耳体, 即含三水三氧化二铝, 化学成分为Al2O3?3H2O或AlOH3。而在比较高的温度时,
则生成以勃姆体为主要成分的形式, 勃姆体就是含一水三氧化二铝, 即Al2O3?H2O或AlOOH,
勃姆体氧化物具有更强的耐腐蚀性。
1.4 铝的腐蚀
1.4.1 铝自然氧化膜的稳定性
铝是一个两性金属, 在酸性介质中生成铝盐, 如果有硫酸根则生成硫酸铝, 在碱性介质中生成铝酸盐,
如果有氢氧化钠存在则生成偏铝酸钠。铝的自然氧化膜的热力学稳定性的条件可以用铝的“电位—pH图”形象地表示,
铝在不同的电位和pH范围时, 可能处于腐蚀区、 钝态区或免蚀区。从图1-2可以看出, 铝在pH4~8时, 而铝的电位约大于-2 V,
那么铝处于钝态, 即铝被表面氧化膜所保护。但是电位—pH图的钝态范围随温度是有些变化的, 这可能与存在的特殊形式氧化膜有关系,
也可能随着生成可溶性的铝络合物或不溶性的铝盐的性质不同而变化。铝在通常大气条件下, 表面形成一层很薄的氧化膜,
阻止了铝与周围介质的反应, 因此可以认为处于钝化区。
图1-2 表示铝的腐蚀区、 免蚀区和钝态区的铝的电位—pH图[1]
铝的表面氧化膜虽然具有自愈性, 即自修复能力, 但是如果氧化膜在不能自行修复的环境中遭到破损,
则腐蚀不可避免地就会继续发生与发展。所以铝的腐蚀过程, 可以用氧化膜在环境中的化学性质来解释,
或者说可以用金属铝与环境之间的化学反应加以解释。
铝的全面腐蚀有影响的因素有两个, 一方面是环境的类型和环境对于铝的化学作用,
另一方面是铝合金冶金学结构与环境的化学反应。周围环境是多种多样的, 从各种类型的室外大气到各种各样的介质, 包括各种土壤、
各种水、不同的食品和化学品、 以及与之接触的不同的建筑材料等等。室外大气随地理位置和环境的不同,
分为农村大气、工业大气和海洋大气等。农村大气的自然污染程度最小, 对于铝的腐蚀作用也最小。而工业大气和海洋大气,
由于分别存在不同程度的硫酸盐、亚硫酸盐和氯化物等污染物, 对于铝的腐蚀作用就比较强。就海洋大气而论, 北方与南方的气温不同,
其腐蚀作用大小也完全不同。
大多数化学品和食品对于铝的耐腐蚀性可以大体分为三类:
1第1类全面腐蚀氧化膜, 例如各种碱和酸、 汞盐、 漂白粉水溶液、 液体氟化氢、 氯仿等, 铝在其中是不稳定的。
2第2类局部腐蚀氧化膜, 例如食盐水、 有机酸、 硝酸等, 铝在其中的稳定性是有条件的。
3第3类不腐蚀氧化膜, 一般在pH 5~8环境中铝氧化膜是稳定的。所以铝在其中是稳定的, 例如大多数食品。
当然上述分类是有条件的, 也是非常粗糙的, 或者说只是为了方便叙述, 实际上不可能是严格意义上的分类。
1.4.2 铝的局部腐蚀形态
由于铝属于钝化型金属, 其腐蚀形式除了在某些介质中发生全面腐蚀以外,
铝合金的主要的腐蚀形式是由于钝化膜局部破坏而发生局部腐蚀。铝合金的局部腐蚀主要有点腐蚀pitting
corrosion、缝隙腐蚀crevice corrosion、 电偶腐蚀galvanic
corrosion、晶间腐蚀intergranular corrosion、 层状腐蚀layer corrosion、
丝状腐蚀filiform corrosion等。其中点腐蚀、 缝隙腐蚀和晶间腐蚀是钝化型金属的最典型的腐蚀形式,
而层状腐蚀和丝状腐蚀更是铝的特殊的腐蚀形式。相对于全面腐蚀而言, 金属的局部腐蚀是金属设备或构件腐蚀破环的重要原因和形式。
1 点腐蚀孔蚀。点腐蚀是钝化型金属的典型腐蚀形式, 也是铝合金常见的局部腐蚀形态,
在铝合金处于钝态范围中最为常见。一般以无规则分布的腐蚀点为外观特征,
并且从金属表面不断向内部扩展形成腐蚀孔或腐蚀坑。通常腐蚀孔的深度要比直径大得多,
因此容易引起点腐蚀穿孔。在大气、新鲜水或海水及其他中性水溶液中,
铝表面氧化膜的不连续缺陷位置都会发生点腐蚀。在缝隙位置或异种金属接触位置常常以点腐蚀形式发生与发展,
因此腐蚀外观通常也会出现腐蚀点或腐蚀坑。铝阳极氧化膜盐雾腐蚀试验的结果, 通常按照盐雾腐蚀以后表面的点腐蚀程度,
用点腐蚀级别加以评判。铝合金等钝化型金属材料, 环境因素在卤素离子特别是氯离子存在或其他特殊的介质中, 更容易触发氧化膜的局部破坏,
也就是更加有助于点腐蚀的发生和发展。从铝合金系的角度分析点腐蚀的敏感性, 则高纯铝最难发生点腐蚀,
而含铜的铝合金如2XXX系合金的点腐蚀敏感性最大。
2 缝隙腐蚀。缝隙腐蚀是金属与金属之间, 或金属与其他材料包括非金属材料之间的表面相互接触形成狭缝或间隙,
由于缝隙内外差异充气电池的作用, 使得缝隙内部或近旁阳极区的钝化膜局部破环,
从而发生的局部加速腐蚀的现象。缝隙腐蚀也是钝化型金属的一种特殊腐蚀形式,
铝合金的缝隙腐蚀比较常见。铝表面的沉积物或铝表面的结垢下面也可以认为形成了缝隙, 因此从腐蚀原理上讲, 沉积物腐蚀deposit
corrosion或垢下腐蚀scale corrosion也是一种缝隙腐蚀。缝隙腐蚀的缝隙尺寸是一个临界指标,
过宽或者过窄的缝隙都不能构成缝隙腐蚀发生的条件, 但是临界尺寸大小并不是一成不变的,
它与铝合金成分、溶液成分等操作参数有关。
3电偶腐蚀。电偶腐蚀发生在电位较负的金属铝与电位较正的金属铜等或非金属导体石墨,
在导电性水溶液中直接接触或电接触发生的加速腐蚀现象。如果腐蚀电池作用发生在两个金属之间, 则称为双金属腐蚀bimetallic
corrosion, 有时也称为接触腐蚀contact corrosion。电偶腐蚀不应该与缝隙腐蚀相混淆,
其原理与过程都绝然不同。电位较负的金属处于电偶腐蚀状态时, 可能加速其他腐蚀形态的发生,
例如提高应力腐蚀开裂的敏感性等。电偶腐蚀的发生可能性, 可以从相互接触金属的腐蚀电位的差别大小来预估。杂散电流腐蚀虽然是一种电偶腐蚀,
但是杂散电流腐蚀并不是自然腐蚀的形式, 因为杂散电流腐蚀的电流来源,
是由于非指定回路上的外加电流或外界的感应电流交流电或直流电引起的, 只要消除了这种不希望发生的电流,
杂散电流腐蚀就可以防止。由于裸露的没有氧化膜保护的状态金属铝的自然电位非常负,
因此铝及铝合金的电偶腐蚀现象应该引起高度重视。
4晶间腐蚀。此种腐蚀是沿着金属晶界或紧靠晶界所发生的局部选择性腐蚀现象,
晶间腐蚀的原动力是由于晶界或晶界两侧与晶粒本身基体的电位差异。晶粒边界可能由于第2相的析出,
造成晶间与相邻晶粒或晶间与近侧贫化区的电位差, 从而引起晶间腐蚀而破坏了晶间与相邻晶粒的结合力。晶间腐蚀的金相特征为网络状,
在铝合金腐蚀中比较常见。例如在2024铝合金中, 晶间CuAl2的第2相析出物比基体的钝性更强,
在晶界的第2相析出物两侧都存在一条贫铜的窄带,
加速晶间附近贫铜区的腐蚀。Mg含量小于3%的铝合金5XXX系中某些合金是比较抗晶间腐蚀的,
而Mg含量大于3%的铝合金5083由于晶间析出的Mg2Al3是阳极相, 发生优先腐蚀而引起比较严重的晶间腐蚀。一般来说,
如果晶间的析出相呈连续链状分布, 则晶间腐蚀的敏感性最强。当晶间析出相断续分布时, 晶间腐蚀不容易发生。如果析出相的宽度越大,
则晶间腐蚀敏感性也越大。由于晶间腐蚀很难用通常的表面腐蚀现象加以分辨, 实际上用肉眼很难从表面直接观察到,
而且几乎不引起材料的质量损失或减薄, 为此成为金属设备或结构中危险性很大的一种腐蚀破坏形式。
5层状腐蚀又称剥蚀exfloitation
corrosion。层状腐蚀是变形铝合金一种较为多见的腐蚀形式。其腐蚀特征是沿着平行于铝合金表面的晶间而扩展的一种选择性腐蚀,
从而使金属发生层状剥离或分层开裂。当金属铝与其他金属处于电偶接触状态时, 层状腐蚀可能会加速。如果层状剥离程度比较轻微,
一般只发生一些裂片、 碎末、 或者形成泡状突起。如果层状腐蚀相当严重, 则发生大片连续的层状剥落,
直至金属结构完全解体。对于Al-Mg合金而言, Mg含量越高, β相数量越多, 同时变形量越大, 晶粒被拉得越长,
β相沿晶间析出的网络越加连续, 则此类铝镁合金的层状腐蚀越敏感。Al-Cu合金的层状腐蚀较少发生,
调整高强Al-Cu合金的时效处理工艺, 基本上可以克服此类合金的层状腐蚀问题。有些专家认为,
层状腐蚀与金属内部存在的应力引起的应力腐蚀有关系, 在适当消除应力的情形下可以降低或消除层状腐蚀。
6 丝状腐蚀膜下丝状腐蚀。丝状腐蚀是在有机涂层、 搪瓷膜等薄膜下, 从薄膜与金属基体界面开始发生的膜下呈纤维状的腐蚀形式,
丝状腐蚀在一定意义上可以理解为另一种形式的缝隙腐蚀。它开始于有机涂层与金属基体的界面位置,
因此通常发生在涂层金属的截面位置或者涂层被破损或划伤的部位。当相对湿度为75%~95%、 温度为20~40℃时,
铝比较容易发生丝状腐蚀。在相对湿度〈30%的盐酸蒸汽中也发现丝状腐蚀现象, 并且随着湿度的提高丝状腐蚀加快。据报道,
典型的丝状腐蚀的平均生长速度为0.1mmd。由于丝状腐蚀发生在钢铁或铝镁合金的有机聚合物膜的下面,
因此有时候也称为膜下腐蚀undercoating corrosion或膜下丝状腐蚀。如果有机物涂层是透明或半透明的,
那末可以透过透明膜清楚看到膜下丝状腐蚀踪迹。这个腐蚀细丝由活性的头部阳极区与具有腐蚀产物的尾部阴极区组成,
腐蚀过程是由于头部与尾部的差异充气电池所驱动, 腐蚀原理上与缝隙腐蚀完全相同。当然机械地将丝状腐蚀作为缝隙腐蚀的一种形式,
完全忽视有机聚合物膜本身的可渗透性对于基体金属腐蚀的影响, 并不是十分全面与确切的理解,
实际上在观察丝状腐蚀时不可能排除有机涂层的可渗透性的影响。因此在发现膜下丝状并探讨丝状腐蚀的原因和防治措施时,
可能需要进一步更加深入的观察和调查, 至少应该鉴别和考虑有机聚合物膜渗透性对于基体腐蚀的影响。
1.5 铝的表面保护处理技术
针对铝表面性能方面存在的缺陷, 表面处理是一项行之有效的保护措施。铝的表面处理可以在保留铝及其合金原有性能的基础上,
提高与完善其表面的保护和装饰性能。铝的表面处理技术不是一项单一技术,
而切切实实是一项系统工程。它是多种机械处理工序和化学表面预处理工序与各种表面成膜和涂装处理工序的搭配和组合,
甚至工序之间的正确清洗同样是不可轻视的步骤, 只有严格技术措施和工艺制度才能达到目的。
铝的表面预处理方法有机械法和化学电化学法两大类。机械法包括喷砂、 刷光、 扫纹和抛光处理等, 化学法包括脱脂、 碱洗、
去灰、亚光处理和抛光处理等。铝合金的工业化的表面保护处理技术运用最广泛的有阳极氧化处理、 化学转化处理以前称化学氧化,
中国不少资料至今沿用日语直接称之为“化成”处理,
电镀与化学镀处理和有机聚合物涂装处理电泳、喷粉或喷漆等。在使用要求不高的情形下可以通过单一的化学转化处理,
即化学氧化处理作为最终的表面处理方法。比较多的情形是化学转化膜作为表面有机聚合物涂装的底层,
在必要时阳极氧化膜也可以作为有机物涂装的底层。铝合金建筑型材的表面处理目前有阳极氧化处理、阳极氧化电泳涂漆处理和有机聚合物静电喷涂处理三大类,
而建筑用铝合金板带的辊涂技术也是相当普遍和成熟的工艺。
铝材表面处理的根本目的是要解决铝及其合金的防护性protection、装饰性decoration和功能性function三方面问题。铝的腐蚀电位比较负,
其全面腐蚀和局部腐蚀都比较容易发生, 铝与其他金属接触包括电接触时, 由于电偶作用使铝的腐蚀明显加速,
也就是说铝的电偶腐蚀问题非常突出。因此防护性主要指防止铝的腐蚀和保护金属铝的外观,
阳极氧化膜和有机聚合物涂层等是最常用的两种表面保护手段。装饰性主要从美观出发提高外观品质, 如除去表面缺陷、
不规则纹理或挤压条纹、保持和提高金属的表面光亮度、 赋予铝表面以各种颜色或各种纹饰等等。为了使这种装饰作用持久保持,
必然要同时考虑或增添防护措施, 也就是增添表面处理技术, 例如机械扫纹或机械抛光、 化学抛光或电化学抛光、
阳极氧化和着色、以及涂装透明漆膜或彩色漆膜等。功能性是指赋予金属表面的某些化学或物理的新特性, 比如增加硬度、
提高耐磨损、强化电绝缘及亲水性等。至于利用阳极氧化膜的多孔性特点沉积功能性粒子, 赋予铝表面阳极氧化膜以新的功能电磁功能、
光电功能等, 更形成了具有广泛潜在用途的另一大类崭新的阳极氧化功能膜领域。本章作为全书的引子,
以下全面扼要介绍几种主要的表面处理方法。
1.5.1 阳极氧化处理
阳极氧化是铝的一种“万能”的表面处理技术, 也是目前工业上应用最广泛的, 人们最熟悉的铝合金的表面保护技术。只要谈及铝材的表面处理,
人们总是首先想到阳极氧化。阳极氧化的类型很多, 按照阳极氧化膜的结构有壁垒型和多孔型两大类。阳极氧化处理作为铝材的一种表面保护手段,
生成的是多孔型阳极氧化膜, 而不是壁垒性阳极氧化膜。多孔型阳极氧化膜可以进行着色处理,
按照性能和使用要求分别进行电解着色或染色处理。为了满足耐腐蚀性和耐候性等各种性能要求, 通常必须进行多孔型膜的封孔处理,
从实际应用出发分别选择热封孔、 冷封孔、 中温封孔甚至有机物封孔, 如电泳涂漆等。许多无机酸或有机酸溶液都可以作为阳极氧化的槽液,
硫酸阳极氧化是最常使用的阳极氧化工艺, 铝合金建筑型材的阳极氧化槽液通常是130~200 gL的硫酸溶液。虽然在某些情况下,
如硬质阳极氧化处理, 在硫酸中可能添加草酸或其他有机酸。
铝阳极氧化膜的硬度明显高于金属本身, 普通硫酸阳极氧化膜的显微硬度约为300HV, 硬质阳极氧化膜可以达到450HV以上,
都远远高于金属铝和铝合金材料的硬度值。如前所述, 铝表面自然氧化膜是铝耐腐蚀的基础, 阳极氧化膜的耐腐蚀性能远高于自然氧化膜的,
因此阳极氧化膜的耐腐蚀性和耐磨损性能都更加理想。而且铝的阳极氧化膜本身具有很好的透明度, 从而在阳极氧化处理之后的金属表面,
还可以保持铝的原有的亮丽金属质感。因此阳极氧化处理不仅改善了铝合金的表面耐腐蚀性等使用性能,
而且通过着色或染色可以得到多色多彩的外观, 大大提高了铝的装饰性。此外阳极氧化膜可以得到某些工程特性,
譬如耐磨性或其他功能特性。有关铝阳极氧化功能膜的特点和应用, 请参阅本章参考文献[2]。
近年兴起的微弧氧化, 也叫火花阳极氧化、 微等离子体氧化、 微等离子表面陶瓷化处理等,
是电化学过程与物理放电过程共同作用的结果。微弧氧化膜的硬度甚至可以达到2000HV以上,
特别适合于耐摩擦磨损要求特别高的铝合金零部件。普通阳极氧化膜, 包括硬质阳极氧化膜都是非晶态的氧化物,
而微弧氧化膜则含有相当数量的晶态氧化铝成分。晶态氧化铝α-Al2O3又叫刚玉, 是硬度很高的高温相, 因此微弧氧化膜的硬度特别高,
耐磨性也特别好。可能由于能耗比较高, 大规模批量生产的操作不太容易等因素, 微弧氧化生产的发展水平和规模没有预想中那么理想和广泛,
目前的技术开发和工艺进步还不理想[8]。
1.5.2 化学转化处理
铝的化学转化处理, 如铬酸盐处理、 磷铬酸盐处理或无铬化学转化处理等, 通常作为有机聚合物涂装的底层,
有时候也作为铝的最终表面处理手段,
其中以传统的铬酸盐处理的铬化膜耐腐蚀性最好。虽然铬酸盐处理目前在中国仍是正在采用的一种铝的表面保护手段,
为了消除六价铬对于环境的有害影响, 国内外都在进行无铬的化学转化处理的研究开发,
目前的生产线至少应该有一套完善的将六价铬还原为三价铬的环境保护体系。根本的办法是化学转化处理应该从传统的铬酸盐处理转向开发无铬的化学转化处理技术,
或者采取不水洗的铬酸盐处理技术作为过渡阶段的替代手段。由于欧洲对于环境保护的标准要求最高,
因此欧洲在无铬化学转化处理的普及方面做得最好, 目前大生产主要采用氟锆酸盐和氟钛酸盐体系,
但是主要用于铝板带的静电喷涂或辊涂的化学预处理,
在铝型材方面还没有广泛使用[12~14]。正在研发中的比较有工业前景的无铬化学转化体系还有稀土金属以铈盐的研究较多系,
有机硅烷处理等。尽管无铬化学转化的工业运用目前还不十分理想, 但是作为化学转化处理替代六价铬的方向是毋庸置疑的。
由于化学转化膜的厚度比较薄, 其本身的保护性能一般也不如阳极氧化膜的。即便铬酸盐处理作为有机聚合物的喷涂底层,
也难于避免膜下腐蚀的困扰。为此国外曾经建议阳极氧化膜作为有机聚合物的喷涂的底层, 并且在若干国外规范中建议此时膜厚〈8 μm,
以解决膜下丝状腐蚀问题。这种办法在中国并未实施, 国外也没有得到推广, 实际上这种考虑仍然存在不少技术问题,
由于阳极氧化膜作为底层的存在使得有机聚合物喷涂膜的力学性能无法满足检测要求。
1.5.3 有机物涂装处理
有机物涂装技术包括刷涂、 浸涂、 喷涂和电泳等工艺, 在建筑铝型材表面的有机聚合物涂装中,
电泳涂装和静电喷涂最为普遍和可靠。目前广泛使用的有机聚合物是聚丙烯酸树脂电泳涂装用、
聚酯树脂-TGIC粉末静电喷涂用、聚偏二氟乙烯漆氟碳漆静电喷涂用等。阳极氧化电泳涂装复合膜的膜厚控制精确,
膜厚的均匀性和覆盖性特别好, 具有优良的耐腐蚀性能, 尤其是耐膜下丝状腐蚀性明显优于喷涂膜的。静电粉末喷涂膜色彩丰富、 颜色变化多、
换色容易, 目前具有较好的市场优势。
有机聚合物静电喷涂通常用化学转化膜作为底层, 为了消除丝状腐蚀有时也采用阳极氧化膜作底层。阳极氧化电泳涂装复合膜起源于日本,
是在铝的阳极氧化膜基础上, 阳极电泳丙烯酸树脂形成的双层膜。上述两类有机聚合物膜,
中国都有相当大的工业规模的铝型材处理生产线。铝板带的有机涂层基本上采用辊涂工艺生产, 我国也已经形成较大的生产规模。
有机聚合物喷涂膜在欧洲比较普遍, 近年来在中国建筑铝型材表面处理方面得到迅速发展,
其市场规模已与阳极氧化处理平分秋色。以聚丙烯酸树脂的水溶性涂料作为电泳涂层, 在20世纪60年代日本已经开发成功并投放市场,
中国也已使用多年。溶剂型丙烯酸漆也可以用静电液体喷涂成膜, 目前中国使用的比较少, 因为水溶性电泳涂装技术的环境效应非常好,
而且操作方便。氟碳涂料也采用静电液相喷涂, 现在认为是耐候性最佳的有机涂层。静电液相喷涂用的溶剂型涂料俗称漆,
不可避免存在有毒的挥发性有机化合物VOC造成的大气污染, 并存在溶剂着火的危险,
从环境保护和安全生产角度出发最好避免使用。欧洲目前已经开发出耐候性接近氟碳涂料的新一代高耐用粉末,
并列入欧洲涂层规范Qualicoat, 称之为“二类粉末”。此外, 氟碳树脂粉末也已经问世, 国外已经通过性能检测并进入商品市场,
但是中国目前还未普遍使用。
1.5.4 电镀或化学镀处理
电镀和化学镀本身是一项已经运用多年、 比较成熟的获得金属镀层的工业化表面处理技术。电镀层或化学镀层可以得到金属的外观,
获得导电性好的金属表面层, 既提高金属铝的保护性又赋予某些工程特性。但是由于铝表面具有非常强的化学活性,
使得普通电镀层或化学镀层对于铝的附着力往往很差, 必须采取可靠的专门的镀前预处理,
以保证金属电镀层或化学镀层对于金属铝基体的附着力。目前铝上电镀前的预处理主要是锌酸盐处理, 俗称浸锌处理可以满足技术需要。除此以外,
国内外铝合金镀前预处理的研究工作比较活跃, 不仅发表了较多论文, 工艺也有了明显的进展。但要产业化还值得进一步研究探讨,
以达到可靠性、 稳定性和低成本的批量生产水平。
其他物理处理方法基本上处于研究或开发阶段, 例如离子注入、 物理气相沉积、 表面激光处理等,
目前还不具备大规模工业化生产条件。另外还有表面搪瓷珐琅化处理工艺, 国外早期虽已经工业化生产用在建筑业,
中国目前尚没有工业化批量化生产应用实例, 为此本章不再赘述。本章所述各种表面处理工艺将在以下章节中分别详述。
参考文献
[1] 朱祖芳. 铝合金阳极氧化工艺技术应用手册. 北京: 冶金工业出版社, 2007
[2] 川合慧著, 朱祖芳译. 铝阳极氧化膜电解着色及功能膜应用. 北京: 冶金工业出版社, 2005
[3] 日本輕金属製品協会.ァルミニウム加工方法と使い方の基礎知識. 東京: 日本輕金属制品協会, 2004
[4] 日本輕金属製品協会. ァルミニウム表面處理の理論と实务第三版. 東京: 日本輕金属製品協会, 1994
[5] 日本輕金属制品協会.ァルミ表面處理ノート第五版.東京: 日本輕金属製品協会,
[6] 朱祖芳. 中国建筑铝型材的表面处理工艺及发展方向, 2004年8月24日国际标准讨论会报告, 东京, 2004
[7] 朱祖芳.建筑铝型材的表面处理技术现况及发展趋势, 电镀与涂饰, 2005, 244: 14-17
[8] 朱祖芳. 铝及镁合金的微弧氧化和抑弧氧化.中国镁业, 20043: 22-25
[9] F.Falcone. 5th world congress Aluminium 2000C, 18-22 March
2003, Rome, Italy
[10] F.Falcone. 4th world congress Aluminium 2000C, 12~15 April
2000, Brescia-Italy
[11] T.Dullus. 4th world congress Aluminium 2000C, 12~15 April
2000, Brescia-Italy
[12] 王祝堂, 田荣璋. 铝合金及其加工手册第三版. 长沙: 中南大学出版社, 2000
|